Using Dominators for Solving Constrained Path Problems

  • Luis Quesada
  • Peter Van Roy
  • Yves Deville
  • Raphaël Collet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3819)

Abstract

Constrained path problems have to do with finding paths in graphs subject to constraints. We present a constraint programming approach for solving the Ordered disjoint-paths problem (ODP), i.e., the Disjoint-paths problem where the pairs are associated with ordering constraints. In our approach, we reduce ODP to the Ordered simple path with mandatory nodes problem (OSPMN), i.e., the problem of finding a simple path containing a set of mandatory nodes in a given order. The reduction of the problem is motivated by the fact that we have an appropriate way of dealing with OSPMN based on DomReachability, a propagator that implements a generalized reachability constraint on a directed graph based on the concept of graph variables.

The DomReachability constraint has three arguments: (1) a flow graph, i.e., a directed graph with a source node; (2) the dominance relation graph on nodes and edges of the flow graph; and (3) the transitive closure of the flow graph.

Our experimental evaluation of DomReachability shows that it provides strong pruning, obtaining solutions with very little search. Furthermore, we show that DomReachability is also useful for defining a good labeling strategy. These experimental results give evidence that DomReachability is a useful primitive for solving constrained path problems over directed graphs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AU77]
    Aho, A.V., Ullman, J.D.: Principles of Compiler Design. Addison-Wesley, Reading (1977)Google Scholar
  2. [BC94]
    Beldiceanu, N., Contjean, E.: Introducing global constraints in CHIP. Mathematical and Computer Modelling 12, 97–123 (1994)CrossRefGoogle Scholar
  3. [Bou99]
    Bourreau, E.: Traitement de contraintes sur les graphes en programmation par contraintes. Doctoral dissertation, Université Paris, Paris, France (1999)Google Scholar
  4. [CB04]
    Cambazard, H., Bourreau, E.: Conception d’une contrainte globale de chemin. In: 10e Journées nationales sur la résolution pratique de problèmes NP-complets (JNPC 2004), Angers, France, pp. 107–121 (June 2004)Google Scholar
  5. [CL97]
    Caseau, Y., Laburthe, F.: Solving small TSPs with constraints. In: International Conference on Logic Programming, pp. 316–330 (1997)Google Scholar
  6. [CLR90]
    Cormen, T., Leiserson, C., Rivest, R.: Introduction to Algorithms. The MIT Press, Cambridge (1990)MATHGoogle Scholar
  7. [DDD04]
    Dooms, G., Deville, Y., Dupont, P.: Constrained path finding in biochemical networks. In: 5èmes Journées Ouvertes Biologie Informatique Mathématiques (2004)Google Scholar
  8. [DDD05]
    Dooms, G., Deville, Y., Dupont, P.: CP(Graph):introducing a graph computation domain in constraint programming. In: CP 2005 Proceedings (2005)Google Scholar
  9. [DI00]
    Demetrescu, C., Italiano, G.F.: Fully dynamic transitive closure: Breaking through the O(n 2) barrier. In: IEEE Symposium on Foundations of Computer Science, pp. 381–389 (2000)Google Scholar
  10. [DPc]
    A disjoint-paths problem solved with Reachability. Available at, http://www.info.ucl.ac.be/~luque/PADL06/DPcase.ps
  11. [FLM99]
    Focacci, F., Lodi, A., Milano, M.: Solving tsp with time windows with constraints. In: CLP 1999 International Conference on Logic Programming Proceedings (1999)Google Scholar
  12. [GJ79]
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the The Theory of NP-Completeness. W. H. Freeman and Company, New York (1979)MATHGoogle Scholar
  13. [LT79]
    Lengauer, T., Tarjan, R.: A fast algorithm for finding dominators in a flowgraph. ACM Transactions on Programming Languages and Systems 1(1), 121–141 (1979)MATHCrossRefGoogle Scholar
  14. [Moz04]
    Consortium, M.: The Mozart Programming System, version 1.3.0 (2004), Available at, http://www.mozart-oz.org/
  15. [Mül01]
    Müller, T.: Constraint Propagation in Mozart. Doctoral dissertation, Universität des Saarlandes, Naturwissenschaftlich-Technische Fakultät I, Fachrichtung Informatik, Saarbrücken, Germany (2001)Google Scholar
  16. [PGPR96]
    Pesant, G., Gendreau, M., Potvin, J., Rousseau, J.: An exact constraint logic programming algorithm for the travelling salesman with time windows (1996)Google Scholar
  17. [QVD05a]
    Quesada, L., van Roy, P., Deville, Y.: Reachability: a constrained path propagator implemented as a multi-agent system. In: CLEI 2005 Proceedings (2005)Google Scholar
  18. [QVD05b]
    Quesada, L., van Roy, P., Deville, Y.: The reachability propagator. Research Report INFO-2005-07, Université catholique de Louvain, Louvain-la-Neuve, Belgium (2005)Google Scholar
  19. [Rég94]
    Régin, J.C.: A filtering algorithm for constraints of difference in csps. In: Proceedings of the Twelfth National Conference on Artificial Intelligence, pp. 362–367 (1994)Google Scholar
  20. [Sch00]
    Schulte, C.: Programming Constraint Services. Doctoral dissertation, Universität des Saarlandes, Naturwissenschaftlich-Technische Fakultät I, Fachrichtung Informatik, Saarbrücken, Germany (2000)Google Scholar
  21. [Sel02]
    Sellmann, M.: Reduction Techniques in Constraint Programming and Combinatorial Optimization. Doctoral dissertation, University of Paderborn, Paderborn, Germany (2002)Google Scholar
  22. [SGL97]
    Sreedhar, V.C., Gao, G.R., Lee, Y.-F.: Incremental computation of dominator trees. ACM Transactions on Programming Languages and Systems 19(2), 239–252 (1997)CrossRefGoogle Scholar
  23. [SP78]
    Shiloach, Y., Perl, Y.: Finding two disjoint paths between two pairs of vertices in a graph. Journal of the ACM (1978)Google Scholar
  24. [SPMa]
  25. [SPMb]
  26. [SPMc]
  27. [SPMd]
  28. [VH04]
    Van Roy, P., Haridi, S.: Concepts, Techniques, and Models of Computer Programming. The MIT Press, Cambridge (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Luis Quesada
    • 1
  • Peter Van Roy
    • 1
  • Yves Deville
    • 1
  • Raphaël Collet
    • 1
  1. 1.Université catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations