Advertisement

On Optimal Timed Strategies

  • Thomas Brihaye
  • Véronique Bruyère
  • Jean-François Raskin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3829)

Abstract

In this paper, we study timed games played on weighted timed automata. In this context, the reachability problem asks if, given a set T of locations and a cost C, Player 1 has a strategy to force the game into T with a cost less than C no matter how Player 2 behaves. Recently, this problem has been studied independently by Alur et al and by Bouyer et al. In those two works, a semi-algorithm is proposed to solve the reachability problem, which is proved to terminate under a condition imposing the non-zenoness of cost. In this paper, we show that in the general case the existence of a strategy for Player 1 to win the game with a bounded cost is undecidable. Our undecidability result holds for weighted timed game automata with five clocks. On the positive side, we show that if we restrict the number of clocks to one and we limit the form of the cost on locations, then the semi-algorithm proposed by Bouyer et al always terminates.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Alfaro, L., Henzinger, T.A., Majumdar, R.: Symbolic algorithms for infinite-state games. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 536–550. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: The element of surprise in timed games. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 144–158. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Alur, R., Madhusudan, P.: Decision problems for timed automata: A survey. In: Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 1–24. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Alur, R., Bernadsky, M., Madhusudan, P.: Optimal reachability for weighted timed games. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 122–133. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126, 183–235 (1994)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Alur, R., La Torre, S., Pappas, G.J.: Optimal paths in weighted timed automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 49–62. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Asarin, E., Maler, O.: As soon as possible: Time optimal control for timed automata. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 19–30. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Behrmann, G., Fehnker, A., Hune, T., Larsen, K., Pettersson, P., Romijn, J., Vaandrager, F.: Minimum-cost reachability for priced timed automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 147–161. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Bouyer, P., Cassez, F., Fleury, E., Larsen, K.G.: Optimal strategies in priced timed game automata. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 148–160. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Brihaye, T., Bruyère, V., Raskin, J.-F.: Model-Checking for Weighted Timed Automata. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253, pp. 277–292. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed systems. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 229–242. Springer, Heidelberg (1995)Google Scholar
  12. 12.
    Minsky, M.: Computation: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs (1967)MATHGoogle Scholar
  13. 13.
    La Torre, S., Mukhopadhyay, S., Murano, A.: Optimal-reachability and control for acyclic weighted timed automata. In: Proceedings of IFIP TCS 2002, IFIP Conference Proceedings, vol. 223, pp. 485–497. Kluwer, Dordrecht (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Thomas Brihaye
    • 1
  • Véronique Bruyère
    • 1
  • Jean-François Raskin
    • 2
  1. 1.Faculté des Sciences, Université de Mons-HainautMonsBelgium
  2. 2.Département d’InformatiqueUniversité Libre de BruxellesBruxellesBelgium

Personalised recommendations