Private Itemset Support Counting

  • Sven Laur
  • Helger Lipmaa
  • Taneli Mielikäinen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3783)


Private itemset support counting (PISC) is a basic building block of various privacy-preserving data mining algorithms. Briefly, in PISC, Client wants to know the support of her itemset in Server’s database with the usual privacy guarantees. First, we show that if the number of attributes is small, then a communication-efficient PISC protocol can be constructed from a communication-efficient oblivious transfer protocol. The converse is also true: any communication-efficient PISC protocol gives rise to a communication-efficient oblivious transfer protocol. Second, for the general case, we propose a computationally efficient PISC protocol with linear communication in the size of the database. Third, we show how to further reduce the communication by using various tradeoffs and random sampling techniques.


privacy-preserving data mining private frequent itemset mining private itemset support counting private subset inclusion test 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AIR01]
    Aiello, W., Ishai, Y., Reingold, O.: Priced Oblivious Transfer: How to Sell Digital Goods. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. [AMS+96]
    Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast Discovery of Association Rules. In: Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 307–328. AAAI/MIT Press (1996)Google Scholar
  3. [BGZ04]
    Bayardo Jr., R.J., Goethals, B., Zaki, M.J. (eds.): FIMI 2004, Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations, Brighton, UK. CEUR Workshop Proceedings, vol. 126, November 1 (2004)Google Scholar
  4. [CGN97]
    Chor, B., Gilboa, N., Naor, M.: Private information retrieval by keywords. Technical Report TR CS0917, Department of Computer Science, Technion (1997)Google Scholar
  5. [FIPR05]
    Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword Search and Oblivious Pseudorandom Functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–324. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. [FNP04]
    Freedman, M.J., Nissim, K., Pinkas, B.: Efficient Private Matching and Set Intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. [GKM+03]
    Gunopulos, D., Khardon, R., Mannila, H., Saluja, S., Toivonen, H., Sharma, R.S.: Discovering All Most Specific Sentences. ACM Transactions on Database Systems 28(2), 140–174 (2003)CrossRefGoogle Scholar
  8. [GR05]
    Gentry, C., Ramzan, Z.: Single-Database Private Information Retrieval with Constant Communication Rate. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 803–815. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. [Lip03]
    Lipmaa, H.: Verifiable Homomorphic Oblivious Transfer and Private Equality Test. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 416–433. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. [Lip05]
    Lipmaa, H.: An Oblivious Transfer Protocol with Log-Squared Communication. In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 314–328. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. [Mie03]
    Mielikäinen, T.: On Inverse Frequent Set Mining. In: 2nd Workshop on Privacy Preserving Data Mining (PPDM), Melbourne, Florida, USA, November 19, pp. 18–23. IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  12. [Mie04]
    Mielikäinen, T.: Separating Structure from Interestingness. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 476–485. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. [MT97]
    Mannila, H., Toivonen, H.: Levelwise Search and Borders of Theories in Knowledge Discovery. Data Mining and Knowledge Discovery 1(3), 241–258 (1997)CrossRefGoogle Scholar
  14. [OK04]
    Ogata, W., Kurosawa, K.: Oblivious Keyword Search. Journal of Complexity 20(2–3), 356–371 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  15. [Toi96]
    Toivonen, H.: Sampling Large Databases for Association Rules. In: Vijayaraman, T.M., Buchmann, A.P., Mohan, C., Sarda, N.L. (eds.) VLDB 1996, Proceedings of 22th International Conference on Very Large Data Bases, September 3–6, pp. 134–145. Morgan Kaufmann, San Francisco (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Sven Laur
    • 1
  • Helger Lipmaa
    • 2
    • 3
  • Taneli Mielikäinen
    • 4
  1. 1.Helsinki University of TechnologyFinland
  2. 2.Cybernetica ASEstonia
  3. 3.University of TartuEstonia
  4. 4.University of HelsinkiFinland

Personalised recommendations