Advertisement

On the Computation of Colored Domino Tilings of Simple and Non-simple Orthogonal Polygons

  • Chris Worman
  • Boting Yang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3827)

Abstract

We explore the complexity of computing tilings of orthogonal polygons using colored dominoes. A colored domino is a rotatable 2 × 1 rectangle that is partitioned into two unit squares, which are called faces, each of which is assigned a color. In a colored domino tiling of an orthogonal polygon P, a set of dominoes completely covers P such that no dominoes overlap and so that adjacent faces have the same color. We describe an O(n) time algorithm for computing a colored domino tiling of a simple orthogonal polygon, where n is the number of dominoes used in the tiling. We also show that deciding whether or not a non-simple orthogonal polygon can be tiled with colored dominoes is NP-complete.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adleman, L., Kari, J., Kari, L., Reishus, D.: On the decidability of self-assembly of infinite ribbons. In: Proceedings of FOCS 2002, IEEE Symposium on Foundations of Computer Science, pp. 530–537 (2002)Google Scholar
  2. 2.
    Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified boolean formulas. Inf. Process. Lett. 8(3), 121–123 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Biedl, T.: The complexity of domino tiling. In: Canadian Conference on Computational Geometry (CCCG 2005), pp. 187–190 (2005)Google Scholar
  4. 4.
    Biedl, T., Kant, G.: A better heuristic for orthogonal graph drawings. Comput. Geom. Theory Appl. 9(3), 159–180 (1998)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Cohen, M.F., Shade, J., Hiller, S., Deussen, O.: Wang tiles for image and texture generation. ACM Trans. Graph. 22(3), 287–294 (2003)CrossRefGoogle Scholar
  6. 6.
    Csizmadia, G., Czyzowicz, J., Gasieniec, L., Kranakis, F., Urrutia, J.: Domino tilings of orthogonal polygons. In: Canadian Conference on Computational Geometry (CCCG 1999), pp. 154–157 (1999)Google Scholar
  7. 7.
    Culik, K.: An aperiodic tiling of 13 wang tiles. Discrete Math. 160, 245–251 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Czyzowicz, J., Kranakis, E., Urrutia, J.: Domino tilings and two-by-two squares. In: Canadian Conference on Computational Geometry, CCCG 1997 (1997)Google Scholar
  9. 9.
    Hiller, S., Deussen, O., Keller, A.: Tiled blue noise samples. In: VMV 2001: Proceedings of the Vision Modeling and Visualization Conference 2001, pp. 265–272. Aka GmbH (2001)Google Scholar
  10. 10.
    Jansen, K., Müller, H.: The minimum broadcast time problem for several processor networks. Theoretical Computer Science 147(1–2), 69–85 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kari, J.: Infinite snake tiling problems. In: Ito, M., Toyama, M. (eds.) DLT 2002. LNCS, vol. 2450, pp. 67–77. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Kenyon, C., Kenyon, R.: Tiling a polygon with rectangles. In: 33rd Fundamentals of Computer Science (FOCS), pp. 610–619 (1992)Google Scholar
  13. 13.
    Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Elkies, M.L.N., Kuperberg, G., Propp, J.: Alternating sign matrices and domino tilings, part 1. Journal of Algebraic Combinatorics 1, 111–132 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Elkies, M.L.N., Kuperberg, G., Propp, J.: Alternating sign matrices and domino tilings, part 2. Journal of Algebraic Combinatorics 1, 219–234 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Propp, J.: A reciprocity theorem for domino tilings. The Electronic Journal of Combinatorics 8 (2001)Google Scholar
  17. 17.
    Wang, H.: Proving theorems by pattern recognition. Bell Systems Technical Journal (40), 1–41 (1961)Google Scholar
  18. 18.
    Worman, C., Watson, M.: Tiling layouts with dominoes. In: Proceedings of the 16th Canadian Conference on Computational Geometry (CCCG 2004), pp. 86–90 (2004)Google Scholar
  19. 19.
    Worman, C., Yang, B.: On the computation and chromatic number of colored domino tilings. In: Canadian Conference on Computational Geometry, CCCG 2005 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Chris Worman
    • 1
  • Boting Yang
    • 1
  1. 1.Department of Computer ScienceUniversity of Regina 

Personalised recommendations