Advertisement

Network Load Games

  • Ioannis Caragiannis
  • Clemente Galdi
  • Christos Kaklamanis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3827)

Abstract

We study network load games, a class of routing games in networks which generalize selfish routing games on networks consisting of parallel links. In these games, each user aims to route some traffic from a source to a destination so that the maximum load she experiences in the links of the network she occupies is minimum given the routing decisions of other users. We present results related to the existence, complexity, and price of anarchy of Pure Nash Equilibria for several network load games. As corollaries, we present interesting new statements related to the complexity of computing equilibria for selfish routing games in networks of restricted parallel links.

Keywords

Social Cost Identical User Parallel Edge Congestion Game Polynomial Time Approximation Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahuja, R.K., Magnati, T.L., Orlin, J.B.: Network flows, Theory, Algorithms, and Applications. Prentice Hall, Englewood Cliffs (1993)Google Scholar
  2. 2.
    Björklund, A., Husfeldt, T., Khanna, S.: Approximating longest directed paths and cycles. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 222–233. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Fabrikant, A., Papadimitriou, C., Talwar, K.: The complexity of pure nash equilibria. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC 2004), pp. 604–612 (2004)Google Scholar
  4. 4.
    Feldmann, R., Gairing, M., Lücking, T., Monien, B., Rode, M.: Nashification and the coordination ratio for a selfish routing game. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 514–526. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Fotakis, D., Kontogiannis, S., Koutsoupias, E., Mavronicolas, M., Spirakis, P.: The structure and complexity of nash equilibria for a selfish routing game. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 123–134. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Fotakis, D., Kontogiannis, S., Spirakis, P.: Selfish unsplittable flows. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 593–605. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Gairing, M., Lücking, T., Mavronicolas, M., Monien, B.: Computing Nash equilibria for restricted parallel links. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC 2004), pp. 613–622 (2004)Google Scholar
  8. 8.
    Hochbaum, D.S., Shmoys, D.: A polynomial approximation scheme for scheduling on uniform processors: using the dual approximation approach. SIAM Journal on Computing 17(3), 539–551 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Kleinberg, J.: Single-source unsplittable flow. In: Proceedings of the 37th Annual Symposium on Foundations of Computer Science (FOCS 1997), pp. 68–77 (1996)Google Scholar
  10. 10.
    Kolliopoulos, S., Stein, C.: Approximation algorithms for single-source unsplittable flow. SIAM Journal on Computing 31, 919–946 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Monterer, D., Shapley, L.S.: Potential games. Games and Economic Behavior 14, 124–143 (1996)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Nash, J.F.: Non-cooperative games. Annals of Mathematics 54(2), 286–295 (1951)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. International Journal of Game Theory 2, 65–67 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Roughgarden, T., Tardos, E.: How bad is selfish routing? Journal of the ACM 49(2), 236–259 (2002)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM Journal on Applied Mathematics 38(3), 364–372 (1980)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ioannis Caragiannis
    • 1
  • Clemente Galdi
    • 1
    • 2
  • Christos Kaklamanis
    • 1
  1. 1.Research Academic Computer Technology Institute, Department of Computer Engineering and InformaticsUniversity of PatrasRioGreece
  2. 2.Dipartimento di Informatica ed Applicazioni “R.M. Capocelli”Universitá di SalernoBaronissiItaly

Personalised recommendations