Fast Algorithms for Computing the Tripartition-Based Distance Between Phylogenetic Networks

  • Nguyen Bao Nguyen
  • C. Thach Nguyen
  • Wing-Kin Sung
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3827)

Abstract

Consider two phylogenetic networks N and N′ of size n. The tripartition-based distance finds the proportion of tripartitions which are not shared by N and N′. This distance is proposed by Moret et al (2004) and is a generalization of Robinson-Foulds distance, which is orginally used to compare two phylogenetic trees. This paper gives an O(min{kn log n, n log n + hn})-time algorithm to compute this distance, where h is the number of hybrid nodes in N and N′ while k is the maximum number of hybrid nodes among all biconnected components in N and N′. Note that k << h << n in a phylogenetic network. In addition, we propose algorithms for comparing galled-trees, which are an important, biological meaningful special case of phylogenetic network. We give an O(n)-time algorithm for comparing two galled-trees. We also give an O(n + kh)-time algorithm for comparing a galled-tree with another general network, where h and k are the number of hybrid nodes in the latter network and its biggest biconnected component respectively.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bryant, D., Moulton, V.: NeighborNet: an agglomerative method for the construction of planar phylogenetic networks. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 375–391. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Choy, C., Jansson, J., Sadakane, K., Sung, W.-K.: Computing the maximum agreement of phylogenetic networks. Theoretical Computer Science 335(1), 93–107 (2005)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Doolittle, W.F.: Phylogenetic classification and the universal tree. Science 284, 2124–2128 (1999)CrossRefGoogle Scholar
  4. 4.
    Gusfield, D., Bansal, V.: A fundamental decomposition theory for phylogenetic networks and incompatible characters. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 217–232. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Gusfield, D., Eddhu, S., Langley, C.: Efficient reconstruction of phylogenetic networks with constrained recombination. In: Proc. of the Computational Systems Bioinformatics Conference (CSB 2003), pp. 363–374 (2003)Google Scholar
  6. 6.
    Hein, J.: Reconstructing evolution of sequences subject to recombination using parsimony. Mathematical Biosciences 98(2), 185–200 (1990)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Hon, W.-K., Kao, M.-Y., Lam, T.W., Sung, W.-K., Yiu, S.-M.: Non-shared edges and nearest neighbor interchanges revisited. Inf. Process. Lett. 91(3), 129–134 (2004)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Huson, D.H., Dezulian, T., Klöpper, T., Steel, M.: Phylogenetic super-networks from partial trees. In: Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS (LNBI), vol. 3240, pp. 388–399. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Huson, D.H., Klopper, T., Lockhart, P.J., Steel, M.A.: Reconstruction of reticulate networks from gene trees. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 233–249. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Huynh, T.N.D., Jansson, J., Nguyen, N.B., Sung, W.K.: Constructing a smallest refining galled phylogenetic network. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 265–280. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Jansson, J., Nguyen, N.B., Sung, W.K.: Algorithms for combining rooted triplets into a galled phylogenetic network. In: Proc. of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2005), pp. 349–358 (2005)Google Scholar
  12. 12.
    Jansson, J., Sung, W.-K.: Inferring a level-1 phylogenetic network from a dense set of rooted triplets. In: Chwa, K.-Y., Munro, J.I.J. (eds.) COCOON 2004. LNCS, vol. 3106, pp. 462–471. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Jansson, J., Sung, W.K.: The maximum agreement of two nested phylogenetic networks. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 581–593. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Moret, B.M.E., Nakhleh, L., Warnow, T., Linder, C.R., Tholse, A., Padolina, A., Sun, J., Timme, R.: Phylogenetic networks: Modeling, reconstructibility, and accuracy. IEEE Transactions on Computational Biology and Bioinformatics 1(1), 1–12 (2004)CrossRefGoogle Scholar
  15. 15.
    Nakhleh, L., Sun, J., Warnow, T., Linder, C.R., Moret, B.M.E., Tholse, A.: Towards the development of computational tools for evaluating phylogenetic reconstruction methods. In: Proc. of the 8th Pacific Symposium on Biocomputing (PSB 2003), pp. 315–326 (2003)Google Scholar
  16. 16.
    Nakhleh, L., Warnow, T., Linder, C.R.: Reconstructing reticulate evolution in species – theory and practice. In: Proc. of the 8th Annual International Conf. on Research in Computational Molecular Biology (RECOMB 2004), pp. 337–346 (2004)Google Scholar
  17. 17.
    Posada, D., Crandall, K.A.: Intraspecific gene genealogies: trees grafting into networks. TRENDS in Ecology & Evolution 16(1), 37–45 (2001)CrossRefGoogle Scholar
  18. 18.
    Robinson, D.F., Foulds, L.R.: Comparison of phylogenetic trees. Mathematical Biosciences 53, 131–147 (1981)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Wang, L., Zhang, K., Zhang, L.: Perfect phylogenetic networks with recombination. Journal of Computational Biology 8(1), 69–78 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Nguyen Bao Nguyen
    • 1
  • C. Thach Nguyen
    • 1
  • Wing-Kin Sung
    • 1
  1. 1.National University of SingaporeSingapore

Personalised recommendations