Drawing Phylogenetic Trees

  • Christian Bachmaier
  • Ulrik Brandes
  • Barbara Schlieper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3827)


We present linear-time algorithms for drawing phylogenetic trees in radial and circular representations. In radial drawings given edge lengths (representing evolutionary distances) are preserved, but labels (names of taxons represented in the leaves) need to be adjusted, whereas in circular drawings labels are perfectly spread out, but edge lengths adjusted. Our algorithms produce drawings that are unique solutions to reasonable criteria and assign to each subtree a wedge of its own. The linear running time is particularly interesting in the circular case, because our approach is a special case of Tutte’s barycentric layout algorithm involving the solution of a system of linear equations.


Phylogenetic Tree Edge Length Angular Width Angle Bisector Circle Drawing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carrizo, S.F.: Phylogenetic trees: An information visualization perspective. In: Phoebe Chen, Y.-P. (ed.) Asia-Pacific Bioinformatics Conference (APBC 2004). CRPIT, vol. 29, pp. 315–320. Australian Compter Science (2004)Google Scholar
  2. 2.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, Englewood Cliffs (1999)MATHGoogle Scholar
  3. 3.
    Eades, P.: Drawing free trees. Bulletin of the Institute of Combinatorics and its Applications 5, 10–36 (1992)MATHMathSciNetGoogle Scholar
  4. 4.
    Eades, P., Wormald, N.C.: Fixed edge-length graph drawing is \(\mathcal {NP}\)-hard. Discrete Applied Mathematics 28, 111–134 (1990)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Felsenstein, J.: Maximum likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters. Systematic Zoology 22, 240–249 (1973)CrossRefGoogle Scholar
  6. 6.
    Fitch, W.M.: Torward defining the course of evolution: Minimum change for a specified tree topology. Systematic Zoology 20, 406–416 (1971)CrossRefGoogle Scholar
  7. 7.
    Kaufmann, M., Wagner, D. (eds.): Drawing Graphs. LNCS, vol. 2025. Springer, Heidelberg (2001)MATHGoogle Scholar
  8. 8.
    Lipton, R.J., Rose, D.J., Tarjan, R.E.: Generalized nested dissection. SIAM Journal on Numerical Analysis 16, 346–358 (1979)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Michener, C.D., Sokal, R.R.: A quantitative approach to a problem in classification. Evolution 11, 130–162 (1957)CrossRefGoogle Scholar
  10. 10.
    Page, R.D.M.: TreeView. University of Glasgow, http://taxonomy.zoology.gla.ac.uk/rod/treeview.html
  11. 11.
    PHYLIP. Phylogeny inference package, http://evolution.genetics.washington.edu/phylip.html
  12. 12.
    Reingold, E.M., Tilford, J.S.: Tidies drawing of trees. IEEE Transactions on Software Engineering 7(2), 223–228 (1981)CrossRefGoogle Scholar
  13. 13.
    Saitou, N., Nei, M.: The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4), 406–425 (1987)Google Scholar
  14. 14.
    Swofford, D.L.: PAUP*. Phylogenetic analysis using parsimony (and other methods). Florida State University, http://paup.csit.fsu.edu/
  15. 15.
    Swofford, D.L., Olsen, G.J., Waddel, P.J., Hillis, D.M.: Phylogenetic inference. In: Hillis, D., Moritz, C., Mable, B. (eds.) Molecular Systematics, 2nd edn., pp. 407–514. Sinauer Associates (1996)Google Scholar
  16. 16.
    Tutte, W.T.: Convex representations of graphs. In: Proc. London Mathematical Society, Third Series, vol. 10, pp. 304–320 (1960)Google Scholar
  17. 17.
    Tutte, W.T.: How to draw a graph. In: Proc. London Mathematical Society, Third Series, vol. 13, pp. 743–768 (1963)Google Scholar
  18. 18.
    Walker, J.Q.: A node-positioning algorithm for general trees. Software Practice & Experience 20(7), 685–705 (1990)CrossRefGoogle Scholar
  19. 19.
    Wiese, R., Eiglsperger, M., Kaufmann, M.: yFiles: Visualization and automatic layout of graphs. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 453–454. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Christian Bachmaier
    • 1
  • Ulrik Brandes
    • 1
  • Barbara Schlieper
    • 1
  1. 1.Department of Computer & Information ScienceUniversity of KonstanzGermany

Personalised recommendations