Mobile Pipelines: Parallelizing Left-Looking Algorithms Using Navigational Programming

  • Lei Pan
  • Ming Kin Lai
  • Michael B. Dillencourt
  • Lubomir F. Bic
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3769)


We consider the class of “left-looking” sequential matrix algorithms: consumer-driven algorithms that are characterized by “lazy” propagation of data. Left-looking algorithms are difficult to parallelize using the message-passing or distributed shared memory models because they only possess pipeline parallelism. We show that these algorithms can be directly parallelized using mobile pipelines provided by the Navigational Programming methodology. We present performance data demonstrating the effectiveness of our approach.


Communication Cost Outer Loop Sequential Algorithm Cholesky Factorization Event Handling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dongarra, J.J., Duff, I.S., Sorensen, D.C., van der Vorst, H.A.: Solving Linear Systems on Vector and Shared Memory Computers. Society for Industrial and Applied Mathematics, Philadelphia (1991)Google Scholar
  2. 2.
    Menon, V., Pingali, K.: Look left, look right, look left again: An application of fractal symbolic analysis to linear algebra code restructuring. International Journal of Parallel Programming 32, 501–523 (2004)zbMATHCrossRefGoogle Scholar
  3. 3.
    Pan, L., Bic, L.F., Dillencourt, M.B.: Distributed sequential computing using mobile code: Moving computation to data. In: Ni, L.M., Valero, M. (eds.) Proceedings of the 2001 International Conference on Parallel Processing (ICPP 2001), pp. 77–84. IEEE Computer Society, Los Alamitos (2001)Google Scholar
  4. 4.
    Pan, L., Lai, M.K., Dillencourt, M.B., Bic, L.F.: Mobile pipelines: Parallelizing left-looking algorithms using navigational programming. School of Information & Computer Sciences Technical Report TR# 05-12, University of California, Irvine, Irvine, Calif. (2005)Google Scholar
  5. 5.
    Pan, L., Bic, L.F., Dillencourt, M.B., Lai, M.K.: NavP versus SPMD: Two views of distributed computation. In: Gonzalez, T. (ed.) Proceedings of the Fifteenth IASTED International Conference on Parallel and Distributed Computing and Systems, Anaheim, Calif., vol. 2, pp. 666–673. ACTA Press (2003)Google Scholar
  6. 6.
    Department of Computer Science, University of California, Irvine Irvine, Calif.: MESSENGERS User’s Manual, Version 1.2.04 (2005),
  7. 7.
    Wicke, C., Bic, L.F., Dillencourt, M.B., Fukuda, M.: Automatic state capture of self-migrating computations in messengers. In: Rothermel, K., Hohl, F. (eds.) MA 1998. LNCS, vol. 1477, pp. 68–79. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. 8.
    Pan, L., Lai, M.K., Noguchi, K., Huseynov, J.J., Bic, L.F., Dillencourt, M.B.: Distributed parallel computing using navigational programming. International Journal of Parallel Programming 32, 1–37 (2004)zbMATHCrossRefGoogle Scholar
  9. 9.
    Xue, J.: Loop Tiling for Parallelism. Kluwer Academic Publishers, Boston (2000)zbMATHGoogle Scholar
  10. 10.
    Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice Hall, Englewood Cliffs (1987)zbMATHGoogle Scholar
  11. 11.
    Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.C.: ScaLAPACK Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia (1997)zbMATHCrossRefGoogle Scholar
  12. 12.
    Wilkinson, B., Allen, M.: Parallel Programming: Techniques and Applications Using Networked Workstations and Parallel Computers, 2nd edn. Pearson Prentice Hall, Upper Saddle River (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Lei Pan
    • 1
    • 2
  • Ming Kin Lai
    • 2
  • Michael B. Dillencourt
    • 2
  • Lubomir F. Bic
    • 2
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Donald Bren School of Information & Computer SciencesUniversity of CaliforniaIrvineUSA

Personalised recommendations