Expression Reduction Systems and Extensions: An Overview

  • John Glauert
  • Delia Kesner
  • Zurab Khasidashvili
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3838)

Abstract

Expression Reduction Systems is a formalism for higher-order rewriting, extending Term Rewriting Systems and the lambda-calculus. Here we give an overview of results in the literature concerning ERSs. We review confluence, normalization and perpetuality results for orthogonal ERSs. Some of these results are extended to orthogonal conditional ERSs. Further, ERSs with patterns are introduced and their confluence is discussed. Finally, higher-order rewriting is translated into equational first-order rewriting. The technique develops an isomorphic model of ERSs with variable names, based on de Bruijn indices.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abadi, M., Cardelli, L., Curien, P.L., Lévy, J.-J.: Explicit substitutions. Journal of Functional Programming 4(1), 375–416 (1991)CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Ariola, Z., Felleisen, M., Maraist, J., Odersky, M., Wadler, P.: A call-by-need lambda calculus. In: Proceedings of the 22nd Symposium on Principles of Programming Languages, pp. 233–246. ACM Press, New York (1995)Google Scholar
  4. 4.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)Google Scholar
  5. 5.
    Barendregt, H.: The Lambda Calculus: Its Syntax and Semantics. Studies in Logic and the Foundations of Mathematics, vol. 103. North-Holland, Amsterdam (1984) (Revised Edition)MATHGoogle Scholar
  6. 6.
    Barendregt, H., Bergstra, J.A., Klop, J.-W., Volken, H.: Some notes on lambda-reduction in “degrees, reductions, and representability in the lambda calculus”. Technical Report 22, Department of mathematics, University of Utrecht (1976)Google Scholar
  7. 7.
    Barendregt, H., Kennaway, R., Klop, J.-W., Sleep, M.R.: Needed reduction and spine strategies for the lambda calculus. Information and Computation 75(3), 191–231 (1987)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Benaissa, Z.E.A., Briaud, D., Lescanne, P., Rouyer-Degli, J.: λυ, a calculus of explicit substitutions which preserves strong normalisation. Journal of Functional Programming 6(5), 699–722 (1996)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Bergstra, J.A., Klop, J.-W.: Strong normalization and perpetual reductions in the lambda calculus. Journal of Information Processing and Cybernetics 18(7/8), 403–417 (1982)MATHMathSciNetGoogle Scholar
  10. 10.
    Bergstra, J.A., Klop, J.-W.: Conditional rewrite rules: confluence and termination. Journal of Computer and System Science 32(3), 323–362 (1986)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Bloo, R., Rose, K.: Combinatory reduction systems with explicit substitution that preserve strong normalisation. In: Ganzinger, H. (ed.) RTA 1996. LNCS, vol. 1103, pp. 169–183. Springer, Heidelberg (1996)Google Scholar
  12. 12.
    Bonelli, E.: A normalization result for higher-order calculi with explicit substitutions. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 153–168. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Bonelli, E., Kesner, D., Ríos, A.: De Bruijn indices for metaterms. Journal of Logic and Computation (to appear)Google Scholar
  14. 14.
    Bonelli, E., Kesner, D., Ríos, A.: Relating higher-order and first-order rewriting. Journal of Logic and Computatio (to appear)Google Scholar
  15. 15.
    Bonelli, E., Kesner, D., Ríos, A.: A de Bruijn notation for higher-order rewriting. In: Bachmair, L. (ed.) RTA 2000. LNCS, vol. 1833, pp. 62–79. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Bonelli, E., Kesner, D., Ríos, A.: From higher-order to first-order rewriting (extended abstract). In: Middeldorp, A. (ed.) RTA 2001. LNCS, vol. 2051, pp. 47–62. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Boudol, G.: Computational semantics of term rewriting systems. In: Nivat, M., Reynolds, J. (eds.) Algebraic methods in semantics, pp. 169–236. Cambridge University Press, Cambridge (1985)Google Scholar
  18. 18.
    Bourbaki, N.: Elements of Mathematics, Theory of Sets. Addison-Wesley, Reading (1968)MATHGoogle Scholar
  19. 19.
    Briaud, D.: An explicit eta rewrite rule. In: Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp. 94–108. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  20. 20.
    Burstall, R., MacQueen, D., Sanella, D.: Hope: An experimental applicative language. In: Proceedings of the LISP Conference, pp. 136–143. Stanford University, Computer Science Department (1980)Google Scholar
  21. 21.
    Cerrito, S., Kesner, D.: Pattern matching as cut elimination. In: 14th Symposium on Logic in Computer Science, pp. 98–108. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  22. 22.
    Cerrito, S., Kesner, D.: Pattern matching as cut elimination. Theoretical Computer Science 323, 71–127 (2004)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Cirstea, H., Kirchner, C.: ρ-calculus, the rewriting calculus. In: 5th International Workshop on Constraints in Computational Logics (1998)Google Scholar
  24. 24.
    The Coq Proof Assistant, http://coq.inria.fr/
  25. 25.
    Curien, P.-L.: Categorical combinators, sequential algorithms and functional programming, 1st edn. Progress in Theoretical Computer Science. Birkhäuser, Basel (1986)MATHGoogle Scholar
  26. 26.
    Curien, P.-L.: Thérèse Hardin, and Jean-Jacques Lévy. Confluence properties of weak and strong calculi of explicit substitutions. Technical Report 1617, INRIA-Rocquencourt (1992)Google Scholar
  27. 27.
    de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem. Indag. Mathematicae 5(35), 381–392 (1972)CrossRefGoogle Scholar
  28. 28.
    de Bruijn., N.G.: A namefree lambda calculus with facilities for internal definition of expressions and segments. Technical Report 78-WSK-03, Eindhoven University of Technology (1978)Google Scholar
  29. 29.
    Dershowitz, N., Okada, M., Sivakumar, G.: Canonical conditional rewrite systems. In: Lusk, E., Overbeek, R. (eds.) CADE 1988. LNCS, vol. 310, pp. 538–549. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  30. 30.
    Dowek, G., Hardin, T., Kirchner, C.: Higher-order unification via explicit substitutions. In: 10th Symposium on Logic in Computer Science. IEEE Computer Society Press, Los Alamitos (1995)Google Scholar
  31. 31.
    Dowek, G., Hardin, T., Kirchner, C.: Unification via explicit substitutions: The case of higher-order patterns. Technical Report RR3591, INRIA (1998)Google Scholar
  32. 32.
    The ELAN system, http://elan.loria.fr/.
  33. 33.
    Forest, J.: A weak calculus with explicit operators for pattern matching and substitution. In: Tison, S. (ed.) RTA 2002. LNCS, vol. 2378, pp. 174–191. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  34. 34.
    Forest, J., Kesnerp, D.: Expression reduction systems with patterns. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 107–122. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  35. 35.
    Glauert, J., Kennaway, R., Khasidashvili, Z.: Stable results and relative normalization. Journal of Logic and Computation 10(3), 323–348 (2000); Special Issue: Type Theory and Term RewritingMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Glauert, J., Khasidashvili, Z.: An abstract Böhm-normalization. In: 2nd International Workshop on Reduction Strategies in Rewriting and Programming. Electronic Notes in Theoretical Computer Science, vol. 70(6). Elsevier Science, Amsterdam (2002)Google Scholar
  37. 37.
    Gramlich, B.: Termination and confluence properties of structured rewrite systems. PhD thesis, Universität Kaiserslautern, Germany (1996)Google Scholar
  38. 38.
    Hanus, M., Prehofer, C.: Higher-order narrowing with definitional trees. In: Ganzinger, H. (ed.) RTA 1996. LNCS, vol. 1103, pp. 138–152. Springer, Heidelberg (1996)Google Scholar
  39. 39.
    Hardin, T.: η-reduction for explicit substitutions. In: Kirchner, H., Levi, G. (eds.) ALP 1992. LNCS, vol. 632, pp. 306–321. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  40. 40.
    Hardin, T., Lévy, J.-J.: A confluent calculus of substitutions. In: France-Japan Artificial Intelligence and Computer Science Symposium, Izu, Japan (1989)Google Scholar
  41. 41.
    Hardin, T., Maranget, L., Pagano, B.: Functional back-ends within the lambda-sigma calculus. In: Proceedings of the International Conference on Functional Programming, pp. 25–33. ACM Press, New York (1996)Google Scholar
  42. 42.
    Hudak, P., Peyton-Jones, S., Wadler, P.: Report on the programming language Haskell, a non-strict, purely functional language (version 1.2). Sigplan Notices (1992)Google Scholar
  43. 43.
    Huet, G., Lévy, J.-J.: Computations in orthogonal rewriting systems. In: Lassez, J.-L., Plotkin, G. (eds.) Computational Logic, Essays in Honor of Alan Robinson, pp. 394–443. MIT Press, Cambridge (1991)Google Scholar
  44. 44.
    The Isabelle theorem prover, http://isabelle.in.tum.de/
  45. 45.
    Barry Jay, C.: The pattern calculus. ACM Transactions on Programming Languages and Systems 26(6), 911–937 (2004)CrossRefGoogle Scholar
  46. 46.
    Jouannaud, J.-P., Okada, M.: A computation model for executable higher-order algebraic specification languages. In: 6th Symposium on Logic in Computer Science, pp. 350–361. IEEE Computer Society Press, Los Alamitos (1991)CrossRefGoogle Scholar
  47. 47.
    Kamareddine, F., Ríos, A.: A λ-calculus à la de Bruijn with explicit substitutions. In: Swierstra, S.D. (ed.) PLILP 1995. LNCS, vol. 982, pp. 45–62. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  48. 48.
    Kesner, D.: Confluence properties of extensional and non-extensional λ-calculi with explicit substitutions. In: Ganzinger, H. (ed.) RTA 1996. LNCS, vol. 1103, pp. 184–199. Springer, Heidelberg (1996)Google Scholar
  49. 49.
    Kesner, D.: Confluence of extensional and non-extensional lambda-calculi with explicit substitutions. Theoretical Computer Science 238(1-2), 183–220 (2000)MATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Kesner, D., Puel, L., Tannen, V.: A Typed Pattern Calculus. Information and Computation 124(1), 32–61 (1996)MATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    Khasidashvili, Z.: β-reductions and β-developments of λ-terms with the least number of steps. In: Martin-Löf, P., Mints, G. (eds.) COLOG 1988. LNCS, vol. 417, pp. 105–111. Springer, Heidelberg (1990)Google Scholar
  52. 52.
    Khasidashvili, Z.: Expression reduction systems. Technical Report 36: 200-220, I. Vekua Institute of Applied Mathematics of Tbilisi State University (1990)Google Scholar
  53. 53.
    Khasidashvili, Z.: The church-rosser theorem in orthogonal combinatory reduction systems. Technical Report 1825, INRIA-Rocquencourt (1992)Google Scholar
  54. 54.
    Khasidashvili, Z.: The longest perpetual reductions in orthogonal expression reduction systems. In: Matiyasevich, Y.V., Nerode, A. (eds.) LFCS 1994. LNCS, vol. 813, pp. 191–203. Springer, Heidelberg (1994)Google Scholar
  55. 55.
    Khasidashvili, Z.: On higher order recursive program schemes. In: Tison, S. (ed.) CAAP 1994. LNCS, vol. 787, pp. 172–186. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  56. 56.
    Khasidashvili, Z.: Perpetuality and strong normalization in orthogonal term rewriting systems. In: Enjalbert, P., Mayr, E.W., Wagner, K.W. (eds.) STACS 1994. LNCS, vol. 775, pp. 163–174. Springer, Heidelberg (1994)Google Scholar
  57. 57.
    Khasidashvili, Z.: On the longest perpetual reductions in orthogonal expression reduction systems. Theoretical Computer Science 266(1/2), 737–772 (2001)MATHCrossRefMathSciNetGoogle Scholar
  58. 58.
    Khasidashvili, Z.: Optimal normalization in orthogonal term rewriting systems. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 243–258. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  59. 59.
    Khasidashvili, Z., Glauert, J.: Relating conflict-free stable transition and event models via redex families. Theoretical Computer Science 286(1), 65–95 (2002)MATHCrossRefMathSciNetGoogle Scholar
  60. 60.
    Khasidashvili, Z., Glauert, J.: An abstract concept of optimal implementation. In: 3rd International Workshop on Reduction Strategies in Rewriting and Programming. Electronic Notes in Theoretical Computer Science, vol. 84(4). Elsevier Science, Amsterdam (2003)Google Scholar
  61. 61.
    Khasidashvili, Z., Glauert, J.: Stable computational semantics of conflict-free rewrite systems (partial orders with erasure). In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 467–482. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  62. 62.
    Khasidashvili, Z., Glauert, J.: The geometry of conflict-free reduction spaces. Theoretical Computer Science (2005) (to appear)Google Scholar
  63. 63.
    Khasidashvili, Z., Ogawa, M., van Oostrom, V.: Perpetuality and uniform normalization in orthogonal rewrite systems. Information and Computation 164(1), 118–151 (2001)MATHCrossRefMathSciNetGoogle Scholar
  64. 64.
    Khasidashvili, Z., Piperno, A.: Perpetuality and uniform normalization. In: Hanus, M., Heering, J., Meinke, K. (eds.) ALP 1997 and HOA 1997. LNCS, vol. 1298, pp. 240–255. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  65. 65.
    Khasidashvili, Z., van Oostrom, V.: Context-sensitive conditional expression reduction systems. In: Workshop on Graph Rewriting and Computation. Electronic Notes in Theoretical Computer Science, vol. 2. Elsevier Science, Amsterdam (1995)Google Scholar
  66. 66.
    Khasidashvili, Z., van Oostrom, V.: Context-sensitive conditional rewrite systems. Technical Report SYS–C95–06, University of East Anglia (1995)Google Scholar
  67. 67.
    Klop, J.-W.: Combinatory Reduction Systems. PhD thesis, Mathematical Centre Tracts 127, CWI, Amsterdam (1980)Google Scholar
  68. 68.
    Klop, J.-W.: Term Rewriting Systems. Handbook of Logic in Computer Science, vol. 2, pp. 1–116. Oxford University Press, Oxford (1992)Google Scholar
  69. 69.
    Klop, J.-W., van Oostrom, V., van Raamsdonk, F.: Combinatory reduction systems: introduction and survey. Theoretical Computer Science 121(1/2), 279–308 (1993)MATHCrossRefMathSciNetGoogle Scholar
  70. 70.
    Lévy, J.-J.: Réductions correctes et optimales dans le lambda-calcul. PhD thesis, Université Paris VII, France (1978)Google Scholar
  71. 71.
    Lévy, J.-J.: Optimal reductions in the lambda-calculus. In: Hindley, J.R., Seldin, J.P., Curry, T.H.B. (eds.), pp. 159–192. Academic Press, London (1980)Google Scholar
  72. 72.
    Maranget, L.: Optimal derivations in weak lambda-calculi and in orthogonal term rewriting systems. In: Proceedings of the 18th Symposium on Principles of Programming Languages, pp. 255–269. ACM Press, New York (1991)Google Scholar
  73. 73.
    The MAUDE System, http://maude.cs.uiuc.edu/
  74. 74.
    Melliès, P.-A.: Description Abstraite des Systèmes de Réécriture. PhD thesis, Université Paris VII (1996)Google Scholar
  75. 75.
    Melliès, P.-A.: Axiomatic rewriting theory II: the lambda-sigma calculus enjoys finite normalisation cones. Journal of Logic and Computation 10(3), 461–487 (2000)MATHCrossRefMathSciNetGoogle Scholar
  76. 76.
    Middeldorp, A.: Call by need computations to root-stable form. In: Proceedings of the 24th Symposium on Principles of Programming Languages, pp. 94–105. ACM Press, New York (1997)Google Scholar
  77. 77.
    Milner, R.: Functions as processes. Mathematical Structures in Computer Science 2(2), 119–141 (2005)CrossRefMathSciNetGoogle Scholar
  78. 78.
    Milner, R., Tofte, M., Harper, R.: The definition of Standard ML. MIT Press, Cambridge (1990)Google Scholar
  79. 79.
    Muñoz, C.: A left-linear variant of λσ. In: Join International Conference on Algebraic and Logic Programming and International Workshop on Higher-Order Algebra. LNCS, vol. 1298, pp. 224–239. Springer, Heidelberg (1997)Google Scholar
  80. 80.
    Nederpelt, R.: Strong normalization for a typed lambda-calculus with lambda structured types. PhD thesis, Technische Hogeschool Eindhoven, Netherlands (1973)Google Scholar
  81. 81.
    Nipkow, T.: Higher-order critical pairs. In: 6th Symposium on Logic in Computer Science, pp. 342–349. IEEE Computer Society Press, Los Alamitos (1991)CrossRefGoogle Scholar
  82. 82.
    Nipkow, T.: Orthogonal higher-order rewrite systems are confluent. In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 306–317. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  83. 83.
    Nöcker, E.: Efficient Functional Programming: Compilation and Programming Techniques. PhD thesis, University of Nijmegen, Netherlands (1994)Google Scholar
  84. 84.
    The Objective Caml language, http://caml.inria.fr/
  85. 85.
    O’Donnell, M.J.: Computing in Systems Described by Equations. LNCS, vol. 58. Springer, Heidelberg (1977)MATHGoogle Scholar
  86. 86.
    Pkhakadze, S.: Some problems of the notation theory. I. Vekua Institute of Applied Mathematics of Tbilisi State University (1977) (in Russian)Google Scholar
  87. 87.
    Pkhakadze, S.: An n. bourbaki-type general theory and the properties of contracting symbols and corresponding contracted forms. Georgian Mathematical Journal 6(2), 179–190 (1999)MATHCrossRefMathSciNetGoogle Scholar
  88. 88.
    Plaisted, D.: Polynomial time termination and constraint satisfaction tests. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 405–420. Springer, Heidelberg (2003)Google Scholar
  89. 89.
    The PVS system, http://pvs.csl.sri.com/
  90. 90.
    Ríos, A.: Contribution à l’étude des λ-calculs avec substitutions explicites. Thèse de doctorat, Université de Paris VII (1993)Google Scholar
  91. 91.
    Rose, K.: Explicit cyclic substitutions. In: Rusinowitch, M., Remy, J.-L. (eds.) CTRS 1992. LNCS, vol. 656, pp. 36–50. Springer, Heidelberg (1993)Google Scholar
  92. 92.
    Sørensen, M.H.: Normalization in λ-calculus and type theory. PhD thesis, University of Copenhagen, Denmark (1997)Google Scholar
  93. 93.
    Sørensen, M.H.: Properties of infinite reduction paths in untyped λ-calculus. In: 1st Tbilisi Symposium on Logic, Language and Computation, Selected papers, pp. 353–367. SiLLI Publications, CSLI, Stanford (1998)Google Scholar
  94. 94.
    Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science, vol. 55. Cambridge University Press, Cambridge (2003)Google Scholar
  95. 95.
    Toyama, Y.: Confluent term rewriting systems with membership conditions. In: Kaplan, S., Jouannaud, J.-P. (eds.) CTRS 1987. LNCS, vol. 308, pp. 128–141. Springer, Heidelberg (1988)Google Scholar
  96. 96.
    Turner, D.: Miranda: A non-strict functional language with polymorphic types. In: Jouannaud, J.-P. (ed.) FPCA 1985. LNCS, vol. 201, pp. 1–16. Springer, Heidelberg (1985)Google Scholar
  97. 97.
    van Oostrom, V.: Confluence for Abstract and Higher-order Rewriting. PhD thesis, Vrije University, Amsterdam, Netherlands (1994)Google Scholar
  98. 98.
    van Oostrom, V., van Raamsdonk, F.: Weak orthogonality implies confluence: the higher-order case. In: Matiyasevich, Y.V., Nerode, A. (eds.) LFCS 1994. LNCS, vol. 813, pp. 379–392. Springer, Heidelberg (1994)Google Scholar
  99. 99.
    van Raamsdonk, F.: Confluence and superdevelopments. In: Kirchner, C. (ed.) RTA 1993. LNCS, vol. 690, pp. 168–182. Springer, Heidelberg (1993)Google Scholar
  100. 100.
    van Raamsdonk, F., Severi, P., Sørensen, M.H., Xi, H.: Perpetual reductions in λ-calculus. Information and Computation 149(2), 173–229 (1999)MATHCrossRefMathSciNetGoogle Scholar
  101. 101.
    Wolfram, D.: The Causal Theory of Types. Cambridge Tracts in Theoretical Computer Science, vol. 21. Cambridge University Press, Cambridge (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • John Glauert
    • 1
  • Delia Kesner
    • 2
  • Zurab Khasidashvili
    • 3
  1. 1.School of Computing SciencesUniversity of East AngliaNorwichUK
  2. 2.PPS, CNRS and Université Paris 7France
  3. 3.Logic and Validation TechnologyDesign Technology Division Intel Development CenterHaifaIsrael

Personalised recommendations