Advertisement

Model Theory for Process Algebra

  • Jan A. Bergstra
  • C. A. (Kees) Middelburg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3838)

Abstract

We present a first-order extension of the algebraic theory about processes known as ACP and its main models. Useful predicates on processes, such as deadlock freedom and determinism, can be added to this theory through first-order definitional extensions. Model theory is used to analyse the discrepancies between identity in the models of the first-order extension of ACP and bisimilarity of the transition systems extracted from these models, and also the discrepancies between deadlock freedom in the models of a suitable first-order definitional extension of this theory and deadlock freedom of the transition systems extracted from these models. First-order definitions are material to the formalization of an interpretation of one theory about processes in another. We give a comprehensive example of such an interpretation too.

Keywords

Model Theory Transition System Predicate Symbol Process Algebra Axiom Schema 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Information and Control 60, 109–137 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge Tracts in Theoretical Computer Science, vol. 18. Cambridge University Press, Cambridge (1990)CrossRefGoogle Scholar
  3. 3.
    Milner, R. (ed.): A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidelberg (1980)Google Scholar
  4. 4.
    Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  5. 5.
    Bergstra, J.A., Loots, M.E.: Program algebra for sequential code. Journal of Logic and Algebraic Programming 51, 125–156 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bergstra, J.A., Bethke, I.: Polarized process algebra and program equivalence. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1–21. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Baeten, J.C.M., Bergstra, J.A.: On sequential composition, action prefixes and process prefix. Formal Aspects of Computing 6, 250–268 (1994)zbMATHCrossRefGoogle Scholar
  8. 8.
    Shoenfield, J.R.: Mathematical Logic. Addison-Wesley Series in Logic. Addison-Wesley, Reading (1967)zbMATHGoogle Scholar
  9. 9.
    Chang, C.C., Keisler, H.J.: Model Theory, 3rd edn. Studies in Logic and the Foundations of Mathematics, vol. 73. Elsevier, Amsterdam (1990)zbMATHGoogle Scholar
  10. 10.
    Hodges, W.A.: Model Theory. Encyclopedia of Mathematics and Its Applications, vol. 42. Cambridge University Press, Cambridge (1993)zbMATHCrossRefGoogle Scholar
  11. 11.
    Baeten, J.C.M., Bergstra, J.A., Klop, J.W.: On the consistency of Koomen’s fair abstraction rule. Theoretical Computer Science 51, 129–176 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hennessy, M., Milner, R.: Algebraic laws for non-determinism and concurrency. Journal of the ACM 32, 137–161 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Bergstra, J.A., Klop, J.W.: Algebra of communicating processes. In: de Bakker, J.W., Hazewinkel, M., Lenstra, J.K. (eds.) Proceedings Mathematics and Computer Science I. CWI Monograph, vol. 1, pp. 89–138. North-Holland, Amsterdam (1986)Google Scholar
  14. 14.
    Bergstra, J.A., Klop, J.W.: Process algebra: Specification and verification in bisimulation semantics. In: Hazewinkel, M., Lenstra, J.K., Meertens, L.G.L.T. (eds.) Proceedings Mathematics and Computer Science II. CWI Monograph, vol. 4, pp. 61–94. North-Holland, Amsterdam (1986)Google Scholar
  15. 15.
    Bergstra, J.A., Klop, J.W.: Process theory based on bisimulation semantics. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency. LNCS, vol. 354, pp. 50–122. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  16. 16.
    Bergstra, J.A., Klop, J.W.: A convergence theorem in process algebra. In: de Bakker, J.W., Rutten, J.J.M.M. (eds.) Ten Years of Concurrency Semantics, pp. 164–195. World Scientific, Singapore (1992)Google Scholar
  17. 17.
    van Benthem, J.F.A.K., Bergstra, J.A.: Logic of transition systems. Journal of Logic, Language and Information 3, 247–283 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Fokkink, W.J.: Introduction to Process Algebra. In: Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2000)Google Scholar
  19. 19.
    van Benthem, J.F.A.K., van Eijck, D.J.N., Stebletsova, V.: Modal logic, transition systems and processes. Journal of Logic and Computation 4, 811–855 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Bergstra, J.A., Klop, J.W.: The algebra of recursively defined processes and the algebra of regular processes. In: Paredaens, J. (ed.) ICALP 1984. LNCS, vol. 172, pp. 82–95. Springer, Heidelberg (1984)Google Scholar
  21. 21.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading (1979)zbMATHGoogle Scholar
  22. 22.
    Fokkink, W.J.: A complete equational axiomatization for prefix iteration. Information Processing Letters 52, 333–337 (1994)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Bergstra, J.A., Bethke, I., Ponse, A.: Process algebra with iteration and nesting. Computer Journal 37, 243–258 (1994)CrossRefGoogle Scholar
  24. 24.
    Bergstra, J.A., Fokkink, W.J., Ponse, A.: Process algebra with recursive operations. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, pp. 333–389. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  25. 25.
    Bergstra, J.A., Ponse, A.: Non-regular iterators in process algebra. Theoretical Computer Science 269, 203–229 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Baeten, J.C.M., Bergstra, J.A.: Real time process algebra. Formal Aspects of Computing 3, 142–188 (1991)CrossRefGoogle Scholar
  27. 27.
    Baeten, J.C.M., Bergstra, J.A.: Discrete time process algebra. Formal Aspects of Computing 8, 188–208 (1996)zbMATHCrossRefGoogle Scholar
  28. 28.
    Baeten, J.C.M., Middelburg, C.A.: Process Algebra with Timing. In: Monographs in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2002)Google Scholar
  29. 29.
    Baeten, J.C.M., Bergstra, J.A., Klop, J.W.: Conditional axioms and α/ β-calculus in process algebra. In: Wirsing, M. (ed.) Formal Description of Programming Concepts III, pp. 53–75. North-Holland, Amsterdam (1987)Google Scholar
  30. 30.
    Bergstra, J.A., Middelburg, C.A., Ştefănescu, G.: Network algebra for asynchronous dataflow. International Journal of Computer Mathematics 65, 57–88 (1997)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jan A. Bergstra
    • 1
    • 2
  • C. A. (Kees) Middelburg
    • 3
  1. 1.Programming Research GroupUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Department of PhilosophyUtrecht UniversityUtrechtThe Netherlands
  3. 3.Computing Science DepartmentEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations