Compositional Reasoning for Probabilistic Finite-State Behaviors

  • Yuxin Deng
  • Catuscia Palamidessi
  • Jun Pang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3838)

Abstract

We study a process algebra which combines both nondeterministic and probabilistic behavior in the style of Segala and Lynch’s simple probabilistic automata. We consider strong bisimulation and observational equivalence, and provide complete axiomatizations for a language that includes parallel composition and (guarded) recursion. The presence of the parallel composition introduces various technical difficulties and some restrictions are necessary in order to achieve complete axiomatizations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aceto, L., Ésik, Z., Ingólfsdóttir, A.: Equational axioms for probabilistic bisimilarity (preliminary report). Technical Report RS-02-6, BRICS (2002)Google Scholar
  2. 2.
    Aceto, L., Fokkink, W.J.: The quest for equational axiomatizations of parallel composition: Status and open problems. In: Proceedings of the Workshop on Algebraic Process Calculi: The First Twenty Five Years and Beyond. BRICS Notes Series (2005) (to appear)Google Scholar
  3. 3.
    Andova, S.: Probabilistic Process Algebra. PhD thesis, Eindhoven University of Technology (2002)Google Scholar
  4. 4.
    Baeten, J.C.M., Bergstra, J.A., Smolka, S.A.: Axiomatizing probabilistic processes: ACP with generative probabilities. Information and Computation 121(2), 234–255 (1995)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Baeten, J.C.M., Bravetti, M.: A ground-complete axiomatization of finite state processes in process algebra. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 248–262. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge Tracts in Theoretical Computer Science, vol. 18. Cambridge University Press, Cambridge (1990)CrossRefGoogle Scholar
  7. 7.
    Bandini, E., Segala, R.: Axiomatizations for probabilistic bisimulation. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 370–381. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communications. Information and Control 60, 109–137 (1984)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Bergstra, J.A., Klop, J.W.: Verification of an alternating bit protocol by means of process algebra. In: Bibel, W., Jantke, K.P. (eds.) Mathematical Methods of Specification and Synthesis of Software Systems 1985. LNCS, vol. 215, pp. 9–23. Springer, Heidelberg (1986)Google Scholar
  10. 10.
    Bergstra, J.A., Klop, J.W.: A complete inference system for regular processes with silent moves. In: Proceedings of Logic Colloquium 1986, pp. 21–81. North Holland, Amsterdam (1988)Google Scholar
  11. 11.
    Bravetti, M., Gorrieri, R.: Deciding and axiomatizing weak ST bisimulation for a process algebra with recursion and action refinement. ACM Transactions on Computational Logic 3(4), 465–520 (2002)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Christensen, S.: Decidability and Decomposition in Process Algebras. PhD thesis, University of Edinburgh (1993)Google Scholar
  13. 13.
    Christensen, S., Hirshfeld, Y., Moller, F.: Decidable subsets of ccs. Computer Journal 37(4), 233–242 (1994)CrossRefGoogle Scholar
  14. 14.
    D’Argenio, P.R., Hermanns, H., Katoen, J.-P.: On generative parallel composition. Electronic Notes in Theoretical Computer Science 22 (1999)Google Scholar
  15. 15.
    Deng, Y.: Axiomatisations and types for probabilistic and mobile processes. PhD thesis, Ecole des Mines de Paris (2005)Google Scholar
  16. 16.
    Deng, Y., Palamidessi, C.: Axiomatizations for probabilistic finite-state behaviors. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 110–124. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Fokkink, W.J., Groote, J.F., Pang, J., Badban, B., van de Pol, J.C.: Verifying a sliding window protocol in μCRL. In: Rattray, C., Maharaj, S., Shankland, C. (eds.) AMAST 2004. LNCS, vol. 3116, pp. 148–163. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Giacalone, A., Jou, C.-C., Smolka, S.A.: Algebraic reasoning for probabilistic concurrent systems. In: Proceedings of IFIP WG 2.2/2.3 Working Conference on Programming Concepts and Methods, pp. 453–459 (1990)Google Scholar
  19. 19.
    Groote, J.F., Ponse, A., Usenko, Y.S.: Linearization in parallel pCRL. Journal of Logic and Algebraic Programming 48(1-2), 39–72 (2001)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. Journal of ACM 32, 137–161 (1985)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)MATHGoogle Scholar
  22. 22.
    Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information and Computation 94(1), 1–28 (1991)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Larsen, K.G., Skou, A.: Compositional verification of probabilistic processes. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 456–471. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  24. 24.
    Lynch, N.A., Saias, I., Segala, R.: Proving time bounds for randomized distributed algorithms. In: Proceedings of the 13th Annual ACM Symposium on the Principles of Distributed Computing, pp. 314–323 (1994)Google Scholar
  25. 25.
    Milner, R.: Calculi for synchrony and asynchrony. Theoretical Computer Science 25, 267–310 (1983)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Milner, R.: A complete inference system for a class of regular behaviours. Journal of Computer and System Science 28, 439–466 (1984)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)MATHGoogle Scholar
  28. 28.
    Milner, R.: A complete axiomatisation for observational congruence of finite-state behaviours. Information and Computation 81, 227–247 (1989)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Pogosyants, A., Segala, R., Lynch, N.A.: Verification of the randomized consensus algorithm of Aspnes and Herlihy: a case study. Distributed Computing 13(3), 155–186 (2000)CrossRefGoogle Scholar
  30. 30.
    Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes. In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 481–496. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  31. 31.
    Sokolova, A., de Vink, E.P.: Probabilistic automata: system types, parallel composition and comparison. In: Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of Stochastic Systems. LNCS, vol. 2925, pp. 1–43. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  32. 32.
    Stark, E.W., Smolka, S.A.: A complete axiom system for finite-state probabilistic processes. In: Proof, language, and interaction: essays in honour of Robin Milner, pp. 571–595. MIT Press, Cambridge (2000)Google Scholar
  33. 33.
    Stoelinga, M., Vaandrager, F.: Root contention in IEEE 1394. In: Katoen, J.-P. (ed.) AMAST-ARTS 1999, ARTS 1999, and AMAST-WS 1999. LNCS, vol. 1601, pp. 53–74. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  34. 34.
    Usenko, Y.S.: Linearization in μCRL. PhD thesis, Edindhoven University of Technology (2002)Google Scholar
  35. 35.
    van Glabbeek, R.J.: A complete axiomatization for branching bisimulation congruence of finite-state behaviours. In: Borzyszkowski, A.M., Sokolowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 473–484. Springer, Heidelberg (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Yuxin Deng
    • 1
  • Catuscia Palamidessi
    • 2
  • Jun Pang
    • 2
  1. 1.INRIA Sophia-Antipolis and Université Paris 7France
  2. 2.INRIA Futurs and LIX, École PolytechniqueFrance

Personalised recommendations