Timing the Untimed: Terminating Successfully While Being Conservative

  • J. C. M. Baeten
  • M. R. Mousavi
  • M. A. Reniers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3838)


There have been several timed extensions of ACP-style process algebras with successful termination. None of them, to our knowledge, are equationally conservative (ground-)extensions of ACP with successful termination. Here, we point out some design decisions which were the possible causes of this misfortune and by taking different decisions, we propose a spectrum of timed process algebras ordered by equational conservativity ordering.


Transition System Time Transition Composition Operator Process Theory Time Iteration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baeten, J.C.M.: Embedding untimed into timed process algebra: the case for explicit termination. Mathematical Structures in Computer Science (MSCS) 13(4), 589–618 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Baeten, J.C.M., Bergstra, J.A.: Real Time Process Algebra. Formal Aspects of Computing 3, 142–188 (1991)CrossRefGoogle Scholar
  3. 3.
    Baeten, J.C.M., Bergstra, J.A.: Discrete time process algebra. Formal Aspects of Computing 8(2), 188–208 (1996)zbMATHCrossRefGoogle Scholar
  4. 4.
    Baeten, J.C.M., van Glabbeek, R.J.: Merge and termination in process algebra. In: Nori, K.V. (ed.) FSTTCS 1987. LNCS, vol. 287, pp. 153–172. Springer, Heidelberg (1987)Google Scholar
  5. 5.
    Baeten, J.C.M., Middelburg, C.A.: Process Algebra with Timing. In: EATCS Monographs. Springer, Berlin (2002)Google Scholar
  6. 6.
    Baeten, J.C.M., Reniers, M.A.: Timed process algebra (with a focus on explicit termination and relative-timing). In: Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 59–97. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge Tracts in Theoretical Computer Science, vol. 18. CambrIdge University Press, Cambridge (1990)CrossRefGoogle Scholar
  8. 8.
    Bergstra, J.A., Klop, J.W.: Fixed point semantics in process algebra. Technical Report IW 206/82, Mathematical Center, Amsterdam, The Netherlands (1982)Google Scholar
  9. 9.
    Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Information and Control 60(1-3), 109–137 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Bergstra, J.A., Klop, J.W.: Algebra of communicating processes. In: de Bakker, J.W., Hazewinkel, M., Lenstra, J.K. (eds.) Proceedings of the CWI Symposium Mathematics and Computer Science, pp. 89–138. North-Holland, Amsterdam (1986)Google Scholar
  11. 11.
    Bol, R., Groote, J.F.: The meaning of negative premises in transition system specifications. Journal of the ACM (JACM) 43(5), 863–914 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Fokkink, W.J., Verhoef, C.: A conservative look at operational semantics with variable binding. Information and Computation (I&C) 146(1), 24–54 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    van Glabbeek, R.J.: The meaning of negative premises in transition system specifications II. Journal of Logic and Algebraic Programming (JLAP) 60–61, 229–258 (2004)CrossRefGoogle Scholar
  14. 14.
    Groote, J.F.: Transition system specifications with negative premises. Theoretical Computer Science (TCS) 118(2), 263–299 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Hennessy, M., Regan, T.: A process algebra for timed systems. Information and Computation 117(2), 221–239 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Koymans, C.P.J., Vrancken, J.L.M.: Extending process algebra with the empty process. Technical Report 1, Logic Group Preprint Series, Department of Philosophy, Utrecht University, Utrecht, The Netherlands, Extended and enhanced version appeared as [22] (1985)Google Scholar
  17. 17.
    Moller, F., Tofts, C.M.N.: A temporal calculus of communicating systems. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 401–415. Springer, Heidelberg (1990)Google Scholar
  18. 18.
    Mousavi, M., Reniers, M.A.: Orthogonal extensions in structural operational semantics. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1214–1225. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Nicollin, X., Sifakis, J.: The algebra of timed processes ATP: theory and application. Information and Computation (I&C) 114(1), 131–178 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Vereijken, J.J.: Discrete Time Process Algebra. PhD thesis, Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands (1997)Google Scholar
  21. 21.
    Verhoef, C.: A congruence theorem for structured operational semantics with predicates and negative premises. Nordic Journal of Computing 2(2), 274–302 (1995)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Vrancken, J.L.M.: The algebra of communicating processes with empty process. Theoretical Computer Science 177(2), 287–328 (1997)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • J. C. M. Baeten
    • 1
  • M. R. Mousavi
    • 1
  • M. A. Reniers
    • 1
  1. 1.Department of Computer ScienceEindhoven University of Technology (TU/e)EindhovenThe Netherlands

Personalised recommendations