Advertisement

An Auction-Based Market Equilibrium Algorithm for a Production Model

  • Sanjiv Kapoor
  • Aranyak Mehta
  • Vijay Vazirani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3828)

Abstract

We present an auction-based algorithm for the computing market equilibrium prices in a production model, in which producers have a single linear production constraint, and consumers have linear utility functions. We provide algorithms for both the Fisher and Arrow-Debreu versions of the problem.

Keywords

Production Model Equilibrium Price Market Equilibrium Initial Endowment Price Rise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arrow, K., Debreu, G.: Existence of an Equilibrium for a Competitive Economy. Econometrica 22, 265–290 (1954)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Brainard, W.C., Scarf, H.E.: How to Compute Equilibrium Prices in 1891. Cowles Foundation Discussion Paper (1272) (2000)Google Scholar
  3. 3.
    Chen, N., Deng, X., Sun, X., Yao, A.: Fisher Equilibrium Price with a class of Concave Utility Functions. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 169–179. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Codenotti, B., Vardarajan, K.: Equilbrium for Markets with with Leontief Utilities. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 371–382. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Deng, X., Papadimitriou, C., Safra, S.: On the Complexity of Equilibria. In: 34th ACM Symposium on Theory of Computing (STOC 2002), Montreal, Quebec, Canada (May 2002)Google Scholar
  6. 6.
    Devanur, N., Papadimitriou, C., Saberi, A., Vazirani, V.: Market Equilibrium via a Primal-Dual-Type Algorithm. In: 43rd Symposium on Foundations of Computer Science (FOCS 2002), November 2002, pp. 389–395 (2002)Google Scholar
  7. 7.
    Devanur, N.R., Vazirani, V.: An Improved Approximation Scheme for Computing the Arrow-Debreu Prices for the Linear Case. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 149–155. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Devanur, N.R., Vazirani, V.V.: The Spending Constraint Model for Market Equilibrium: Algorithmic, Existence and Uniqueness Results. In: Proceedings of the 36th Annual ACM Symposium on the Theory of Computing (2004)Google Scholar
  9. 9.
    Eisenberg, E., Gale, D.: Consensus of Subjective Probabilities: The Pari-Mutuel Method. Annals of Mathematical Statistics 30, 165–168 (1959)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Garg, R., Kapoor, S.: Auction Algorithms for Market Equilibrium. In: Proceedings of the 36th Annual ACM Symposium on the Theory of Computing (2004)Google Scholar
  11. 11.
    Garg, R., Kapoor, S., Vazirani, V.: An Auction-Based Market Equilbrium Algorithm for the Separable Gross Substitutibility Case. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 128–138. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Jain, K., Mahdian, M.: Computing equilibria in a fisher market with linear single-constraint production units. In: Deng, X., Ye, Y. (eds.) WINE 2005. LNCS, vol. 3828, pp. 788–792. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Jain, K., Mahdian, M., Saberi, A.: Approximating Market Equilibrium. In: Arora, S., Jansen, K., Rolim, J.D.P., Sahai, A. (eds.) RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 98–108. Springer, Heidelberg (2003)Google Scholar
  14. 14.
    Jain, K., Vazirani, V.V., Ye, Y.: Market Equilibrium for Homothetic, Quasi-Concave Utilities and economies of scale in production. In: SODA (2005)Google Scholar
  15. 15.
    Jain, K.: A Polynomial Time Algorithm for Computing the Arrow-Debreau Market equilibrium for Linear Utilities. In: FOCS (2004)Google Scholar
  16. 16.
    Nenakov, E.I., Primak, M.E.: One algorithm for finding solutions of the Arrow-Debreu model. Kibernetica 3, 127–128 (1983)Google Scholar
  17. 17.
    Newman, D.J., Primak, M.E.: Complexity of Circumscribed and Inscribed Ellipsod Methods for Solving Equilibrium Economical Models. Applied Mathematics and Computations 52, 223–231 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Polterovich, V.M.: Economic Equilibrium and the Optimum. Maketon 5, 3–20 (1973)Google Scholar
  19. 19.
    Primak, M.E.: A Converging Algorithm for a Linear Exchange Model. Journal of Mathematical Economics 22, 181–187 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Walras, L.: Elements of Pure Economics, or the Theory of Social Wealth, Lausanne, Paris (1874) (in French)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Sanjiv Kapoor
    • 1
  • Aranyak Mehta
    • 2
  • Vijay Vazirani
    • 2
  1. 1.Department of Computer ScienceIllinois Institute of TechnologyChicago
  2. 2.College of ComputingGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations