An Agent-Oriented Conceptual Framework for Systems Biology

  • Nicola Cannata
  • Flavio Corradini
  • Emanuela Merelli
  • Andrea Omicini
  • Alessandro Ricci
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3737)


Recently, a collective effort from multiple research areas has been made to understand biological systems at the system level. On the one hand, for instance, researchers working on systems biology aim at understanding how living systems routinely perform complex tasks. On the other hand, bioscientists involved in pharmacogenomics strive to study how an individual’s genetic inheritance affects the body’s response to drugs. Among the many things, research in the above disciplines requires the ability to simulate particular biological systems as cells, organs, organisms and communities. When observed according to the perspective of system simulation, biological systems are complex ones, and consist of a set of components interacting with each other and with an external (dynamic) environment.

In this work, we propose an alternative way to specify and model complex systems based on behavioral modelling. We consider a biological system as a set of active computational components interacting in a dynamic and often unpredictable environment. Then, we propose a conceptual framework for engineering computational systems simulating the behaviour of biological systems, and modelling them in terms of agents and agent societies.


System Biology Multiagent System Process Algebra System Biology Markup Language Tuple Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kitano, H.: Foundations of Systems Biology. MIT Press, Cambridge (2002)Google Scholar
  2. 2.
    Finkelstein, A., Hetherington, J., Li, L., Margominski, O., Saffrey, P., Seymour, R., Warner, A.: Computational challenges of systems biology. IEEE Computer 37, 26–33 (2004)Google Scholar
  3. 3.
    Systems Biology Workbench,
  4. 4.
    Systems Biology Modelling Language,
  5. 5.
    Hucka, M., Finney, A., Sauro, H., et al.: The systems biology markup language (SBML): a medium for representation and exchange of biomedical network models. Bioinformatics 19, 524–531 (2003)CrossRefGoogle Scholar
  6. 6.
  7. 7.
    Bellifemine, F., Poggi, A., Rimassa, G.: Developing multi-agent systems with a fipa-compliant agent framework. Software Practice and Experience 31, 103–128 (2001)zbMATHCrossRefGoogle Scholar
  8. 8.
    Corradini, F., Merelli, E.: Hermes: Agent-based middleware for mobile computing. In: Bernardo, M., Bogliolo, A. (eds.) SFM-Moby 2005. LNCS, vol. 3465, pp. 234–270. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Denti, E., Omicini, A., Ricci, A.: Coordination tools for the development of agent-based systems. Applied Artificial Intelligence 16 (2002)Google Scholar
  10. 10.
    Cardelli, L.: Abstract machines of systems biology. In: Priami, C., Merelli, E., Gonzalez, P., Omicini, A. (eds.) Transactions on Computational Systems Biology III. LNCS (LNBI), vol. 3737, pp. 145–168. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Corradini, F., Merelli, E., Vita, M.: A multi-agent system for modelling the oxidation of carbohydrate cellular process. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3481, pp. 1265–1273. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    d’Inverno, M., Saunders, R.: Agent-based modelling of stem cell organisation in a niche. In: Brueckner, S.A., Di Marzo Serugendo, G., Karageorgos, A., Nagpal, R. (eds.) ESOA 2005. LNCS (LNAI), vol. 3464, pp. 52–68. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Walker, D., Southgate, J., Hill, G., Holcombe, M., Hose, D.R., Wood, S.M., Mac Neil, S., Smallwood, R.H.: The epitheliome: agent-based modelling of the social behaviour of cells. Biosystems 76, 89–100 (2004)CrossRefGoogle Scholar
  14. 14.
    Corradini, F., Mariani, L., Merelli, E.: An agent-based approach to tool integration. Journal of Software Tools Technology Transfer 6, 231–244 (2004)CrossRefGoogle Scholar
  15. 15.
    Merelli, E., Young, M.: Validating MAS models with mutation. In: 1st International Workshop on Multi-Agent Systems for Medicine, Computational Biology, and Bioinformatics (MAS*BIOMED 2005), AAMAS 2005, July 25, Utrecht, The Netherlands (2005)Google Scholar
  16. 16.
    Kacprzak, M., Lomuscio, A., Penczek, W.: Verification of multiagent systems via unbounded model checking. In: Jennings, N.R., Sierra, C., Sonenberg, L., Tambe, M. (eds.) AAMAS 2004, vol. 2, pp. 638–645. ACM, New York (2004)Google Scholar
  17. 17.
    De Jong, H.: Modeling and simulation of genetic regulatory systems: a literature review. Journal of Computational Biology 9, 67–103 (2002)CrossRefGoogle Scholar
  18. 18.
    Antoniotti, M., Mishra, B., Piazza, C., Policriti, A., Simeoni, M.: Modeling cellular behavior with hybrid automata: Bisimulation and collapsing. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 57–74. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Mendes, P.: GEPASI: a software package for modelling the dynamics, steady states and control of biochemical and other systems. Computer Applications in the Biosciences 9, 563–571 (1993)Google Scholar
  20. 20.
    Tomita, M., Hashimoto, K., Takahashi, K., Shimizu, T.S., Matsuzaki, Y., Miyoshi, F., Saito, K., Tanida, S., Yugi, K., Venter, J.C., Hutchison, C.A.: E-CELL: software environment for whole-cell simulation. Bioinformatics 15, 72–84 (1999)CrossRefGoogle Scholar
  21. 21.
    Antoniotti, M., Policriti, A., Ugel, N., Mishra, B.: S-systems: extended s-systems and algebraic differential automata for modeling cellular behavior. In: Sahni, S.K., Prasanna, V.K., Shukla, U. (eds.) HiPC 2002. LNCS, vol. 2552, pp. 431–442. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  22. 22.
    Peleg, M., Yeh, I., Altman, R.: Modeling biological process using workflow and Petri nets. Bioinfomatics 18, 825–837 (2002)CrossRefGoogle Scholar
  23. 23.
    Matsuno, H., Tanaka, Y., Aoshima, H., Doi, A., Matsui, M., Miyano, S.: Biopathways representation and simulation on hybrid functional Petri net. Silico Biology 3, 389–404 (2003)Google Scholar
  24. 24.
    Koch, I., Junker, B.H., Heiner, M.: Application of Petri net theory for modelling and validation of the sucrose breakdown pathway in the patato tuber. Bioinformatics 21, 1219–1226 (2005)CrossRefGoogle Scholar
  25. 25.
    Nagasaki, M., Doi, A., Matsuno, H., Miyano, S.: A versatile Petri net based architecture for modeling and simulation of complex biological processes. Genome Informatics 16 (2004)Google Scholar
  26. 26.
    Nagasaki, M., Onami, S.: Bio-calculus: Its concept, and an application for molecular interaction. Genome Informatics 10, 133–143 (1999)Google Scholar
  27. 27.
    Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of biochemical processes using the pi-calculus process algebra. In: Pacific Symposium of Biocomputing (PSB 2001), vol. 6, pp. 459–470 (2001)Google Scholar
  28. 28.
    Regev, A.: Representation and simulation of molecular pathways in the stochastic pi-calculus. In: 2nd workshop on Computation of Biochemical Pathways and Genetic Networks, Heidelberg, Germany (2001)Google Scholar
  29. 29.
    Chiarugi, D., Curti, M., Degano, P., Marangoni, R.: VICE: a VIrtual CEll. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 207–220. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  30. 30.
    Cardelli, L.: Brane calculi: Interactions of biological membranes. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  31. 31.
    Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  32. 32.
    Gonzalez, P., Cardenas, M., Camacho, D., Franyuti, A., Rosas, O., Otero, J.: Cellulat: an agent-based intracellular signalling model. BioSystems 68, 171–185 (2003)CrossRefGoogle Scholar
  33. 33.
    Lazebnik, Y.: Can a biologist fix a radio?—Or, what I learned while studying apoptosis. Cancer Cell 2, 179–182 (2002)CrossRefGoogle Scholar
  34. 34.
    Regev, A., Shapiro, E.: Cellular abstractions: Cells as computation. Nature 419, 343 (2002)CrossRefGoogle Scholar
  35. 35.
    Zambonelli, F., Omicini, A.: Challenges and research directions in agent-oriented software engineering. Autonomous Agents and Multi-Agent Systems 9, 253–283 (2004)CrossRefGoogle Scholar
  36. 36.
    Jennings, N.: An agent-based approach for building complex software systems. Communication of ACM 44, 35–41 (2001)CrossRefGoogle Scholar
  37. 37.
    Conte, R., Edmonds, B., Moss, S., Sawyer, K.: Sociology and social theory in agent based social simulation: A symposium. Computational and Mathematical Organizational Theory 7 (2001)Google Scholar
  38. 38.
    Gilbert, N., Conte, R. (eds.): Artificial Societies: the computer simulation of social life. UCL Press, London (1995)Google Scholar
  39. 39.
    Davidsson, P.: Agent based social simulation: A computer science view. Journal of Artificial Societies and Social Simulation 5 (2002)Google Scholar
  40. 40.
    Parunak, V.D., Savit, R., Riolo, R.L.: Agent-based modelling vs. equation based modelling: A case study and users’ guide. In: Sichman, J.S., Conte, R., Gilbert, N. (eds.) MABS 1998. LNCS (LNAI), vol. 1534, pp. 10–26. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  41. 41.
    Jennings, N., Wooldridge, M. (eds.): Agent Technololgy: Foundations, Applications, and Markets. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  42. 42.
    Wooldridge, M.J., Jennings, N.R.: Intelligent agents: Theory and practice. The Knowledge Engineering Review 10, 115–152 (1995)CrossRefGoogle Scholar
  43. 43.
    Jennings, N.R.: On agent based software engineering. Artificial Intelligence 117, 277–296 (2000)zbMATHCrossRefGoogle Scholar
  44. 44.
    Wegner, P.: Coordination as constrained interaction. In: Hankin, C., Ciancarini, P. (eds.) COORDINATION 1996. LNCS, vol. 1061, pp. 305–320. Springer, Heidelberg (1996)Google Scholar
  45. 45.
    Ricci, A., Viroli, M., Omicini, A.: Environment-based coordination through coordination artifacts. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2004. LNCS (LNAI), vol. 3374, pp. 190–214. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  46. 46.
    Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordination artifacts: Environment-based coordination for intelligent agents. In: Jennings, N.R., Sierra, C., Sonenberg, L., Tambe, M. (eds.) AAMAS 2004, vol. 1, pp. 286–293. ACM, New York (2004)Google Scholar
  47. 47.
  48. 48.
    Cliff, J., Rocha, L.M.: Towards semiotic agent-based models of socio-technical organizations. In: Sarjoughian, H., et al. (eds.) AI, Simulation and Planning in High Autonomy Systems (AIS 2000), Tucson, AZ, USA, pp. 70–79 (2000)Google Scholar
  49. 49.
    Richards, D., Richards, W.A., McKey, B.: Collective choices and mutual knowledge structures. Advances in Complex Systems 1, 221–236 (1998)CrossRefGoogle Scholar
  50. 50.
    Omicini, A., Ossowski, S., Ricci, A.: Coordination infrastructures in the engineering of multiagent systems. In: Bergenti, F., Gleizes, M.P., Zambonelli, F. (eds.) Methodologies and Software Engineering for Agent Systems: The Agent-Oriented Software Engineering Handbook, pp. 273–296. Kluwer Academic Publishers, Dordrecht (2004)CrossRefGoogle Scholar
  51. 51.
    Sycara, K., Paolucci, M., van Velsen, M., Giampapa, J.: The RETSINA MAS infrastructure. Autonomous Agents and Multi-Agent Systems 7, 29–48 (2003)CrossRefGoogle Scholar
  52. 52.
    Omicini, A., Zambonelli, F.: Coordination for Internet application development. Autonomous Agents and Multi-Agent Systems 2, 251–269 (1999) (Special Issue: Coordination Mechanisms for Web Agents)CrossRefGoogle Scholar
  53. 53.
    Danos, V., Krivine, J.: Formal molecular biology. Theoretical Computer Science 325, 69–110 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: Bioambients: An abstraction for biological compartments. Theoretical Computer Science. Special Issue on Computational Methods in Systems Biology. Elsevier 325, 141–167 (2004)zbMATHMathSciNetGoogle Scholar
  55. 55.
    d’Inverno, M., Luck, M.: Understanding Agent Systems, 2nd edn. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  56. 56.
    Odell, J., Parunak, H., Bauer, B.: Extending uml for agents. In: Agent-Oriented Information Systems Workshop at the 17th National conference on Artificial Intelligence (2000)Google Scholar
  57. 57.
    Pogson, M., Holcomb, M., Qwarnstrom, E.: An agent based model of the NF-kB signalling pathways. In: 5th International Conference on Systems Biology (ICSB 2004), Heidelberg, Germany (2004)Google Scholar
  58. 58.
    Garret, R., Grisham, C.: Biochemistry. Sunder College Publishing (1995)Google Scholar
  59. 59.
    Omicini, A., Denti, E.: From tuple spaces to tuple centres. Science of Computer Programming 41, 277–294 (2001)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Nicola Cannata
    • 1
  • Flavio Corradini
    • 2
  • Emanuela Merelli
    • 2
  • Andrea Omicini
    • 3
  • Alessandro Ricci
    • 3
  1. 1.CRIBI Biotechnology CentreUniversità di PadovaPadovaItaly
  2. 2.Dipartimento di Matematica e InformaticaUniversità di CamerinoCamerinoItaly
  3. 3.DEIS, Alma Mater StudiorumUniversità di BolognaCesenaItaly

Personalised recommendations