Advertisement

An Autonomous Mobile Robot Based on Quantum Algorithm

  • Daoyi Dong
  • Chunlin Chen
  • Chenbin Zhang
  • Zonghai Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3801)

Abstract

In this paper, we design a novel autonomous mobile robot which uses quantum sensors to detect faint signals and fulfills some learning tasks using quantum reinforcement learning (QRL) algorithms. In this robot, a multi-sensor system is designed with SQUID sensor and quantum Hall sensor, where quantum sensors coexist with traditional sensors. A novel QRL algorithm is applied and a simple simulation example demonstrates its validity.

Keywords

Mobile Robot Quantum Algorithm Superposition State Quantum Sensor Autonomous Mobile Robot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Morisawa, J., Otaka, M., Kodama, M., Kato, T., Suzuki, S.: Detection of Intergranular Cracking Susceptibility Due to Hydrogen in Irradiated Austenitic Stainless Steel with A Superconducting Quantum Interference Device (SQUID) Sensor. J. Nucl. Mater. 302, 66–71 (2002)CrossRefGoogle Scholar
  2. 2.
    Behet, M., Bekaert, J., De Boeck, J., Borghs, G.: InAs/Al0.2Ga0.8Sb Quantum Well Hall Effect Sensors. Sensors and Actuators 81, 13–17 (2000)CrossRefGoogle Scholar
  3. 3.
    Behet, M., Das, J., De Boeck, J., Borghs, G.: InAs/(Al, Ga)Sb Quantum Well Structure for Magnetic Sensors. IEEE Trans. Magn. 34, 1300–1302 (1998)CrossRefGoogle Scholar
  4. 4.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  5. 5.
    Dong, D.Y., Chen, C.L., Chen, Z.H.: Quantum Reinforcement Learning. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC 2005. LNCS, vol. 3611, pp. 686–689. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Sutton, R., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Daoyi Dong
    • 1
  • Chunlin Chen
    • 1
  • Chenbin Zhang
    • 1
  • Zonghai Chen
    • 1
  1. 1.Department of AutomationUniversity of Science and Technology of ChinaHefei, AnhuiChina

Personalised recommendations