A Novel Fusing Algorithm for Retinal Fundus Images

  • Bin Fang
  • Xinge You
  • Yuan Yan Tang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3801)


In this paper, a novel fusing method for fundus retinal images based on robust registration techniques is proposed. In order to construct precise fusion map, we apply a ‘coarse-to-fine’ mapping strategy to accurately align pairs of identified vascular trees of retinas. A coarse mapping algorithm that exploits rigid model is first performed to maximize the goodness of fit between the vascular features over two time periods. However, the results suffer from local misalignment due to the inherent imprecise characteristics of the simplified model. A fine mapping algorithm is employed to eliminate ‘ghost vessels’ based on a local elastic matching technique. The transformed vectors for pixels in the registered fundus image are conveniently calculated by combining the local move vector and the global model transformed vector. Experiment results demonstrate nearly perfect fusion maps of several retinal fundus images in terms of visual inspection.


Diabetic Retinopathy Feature Point Retinal Image Vascular Tree Fuse Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Singer, D.E., Nathan, D.M., Fogel, H.A., Schachar, A.P.: Screening for diabetic retinopathy. Ann. Intern. Med. (116), 660–671 (1992)Google Scholar
  2. 2.
    Ritter, N., Owens, R., Cooper, J., Eikelboom, R.H., Saarloos, P.P.V.: Registration of stereo and temporal images of the retina. IEEE Trans. Med. Imag. 18, 404–418 (1999)CrossRefGoogle Scholar
  3. 3.
    Can, A., Stewart, C.V., Roysam, B., Tanenbaum, H.L.: A feature-based, robust, hierarchical algorithm for registering pairs of images of the curved human retina. IEEE Trans. Patt. Anal. Mach. Intell. 24(3), 347–364 (2002)CrossRefGoogle Scholar
  4. 4.
    Pinz, A., Bernogger, S., Datlinger, P., Kruger, A.: Mapping the Human Retina. IEEE Trans. Med. Imag. 17(4), 606–619 (1998)CrossRefGoogle Scholar
  5. 5.
    Matsopoulos, G.K., Mouravliansky, N.A., Delibasis, K.K., Nikita, K.S.: Automatic retinal image registration scheme using global optimization techniques. IEEE Trans. Info. Tech. Biomed. 3(1), 47–60 (1999)CrossRefGoogle Scholar
  6. 6.
    Fang, B., Hsu, W., Lee, M.L.: Reconstruction of vascular structures in retinal images. In: Proceedings of the ICIP 2003, Barcelona, Spain (September 2003)Google Scholar
  7. 7.
    Borgefors, G.: Hierarchical Chamfer Matching: a parametric edge matching algorithm. IEEE trans. Pattern Analysis Machine Intelligence 10(6), 849–865 (1988)CrossRefGoogle Scholar
  8. 8.
    Leung, C.H., Suen, C.Y.: Matching of Complex Patterns by Energy Minimization. IEEE Transactions on Systems, Man and Cybernetics, Part B 28(5), 712–720 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Bin Fang
    • 1
  • Xinge You
    • 1
  • Yuan Yan Tang
    • 1
  1. 1.College of Computer ScienceChongqing UniversityChongqingChina

Personalised recommendations