Modeling User Intention in Pervasive Service Environments

  • Pascal Bihler
  • Lionel Brunie
  • Vasile-Marian Scuturici
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3824)

Abstract

The introduction of pervasive computing environments in everyday life will not just be a big step for users, but also for application designers. The well defined interaction interfaces will make place for other, more intuitive ways of interaction. It is the challenge for a pervasive system middleware to capture and model the user intention in a smart way and to solve ambiguousness in the user’s expression of a pervasive action. This paper introduces the Pervasive Service Action Query Language (PsaQL), a language to formalize the description of a user intention using composed pervasive services. The work describes a way of translating the user intention into an executable action and propose algorithms performing this translation. Considerations to implement this process are given within the scope of PerSE, a pervasive service environment developed by our research group, together with general evaluation metrics for such algorithms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Weiser, M.: The Computer for the 21st Century. Scientific American, 94–104 (September 1991)Google Scholar
  2. 2.
    Date, C.J.: A guide to the SQL standard. Addison-Wesley Longman Publishing Co., Inc., Boston (1986)Google Scholar
  3. 3.
    Manber, U.: Introduction to Algorithms: A Creative Approach. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)MATHGoogle Scholar
  4. 4.
    Sousa, J.P., Garlan, D.: Improving user-awareness by factoring it out of applications. In: UbiSys 2003 - System Support for Ubiquitous Comp. Workshop (2003)Google Scholar
  5. 5.
    Saif, U., Pham, H., Paluska, J.M., Waterman, J., Terman, C., Ward, S.: A case for goal-oriented programming semantics. In: UbiSys 2003 - System Support for Ubiquitous Computing Workshop (2003)Google Scholar
  6. 6.
    El-Khatib, K., Bochmann, G.v., El Saddik, A.: A qos-based framework for distributed content adaptation. In: Quality of Service in Heterogeneous Wired/Wireless Networks, QSHINE 2004, pp. 308–312 (2004)Google Scholar
  7. 7.
    Román, M., Hess, C., Cerqueira, R., Ranganat, A., Campbell, R.H., Nahrstedt, K.: Gaia: A middleware infrastructure to enable active spaces. IEEE Pervasive Computing, 74–83 (2002)Google Scholar
  8. 8.
    Garlan, D., Siewiorek, D., Smailagic, A., Steenkiste, P.: Project aura: Toward distraction-free pervasive computing. IEEE Pervasive Computing 1, 22–31 (2002)CrossRefGoogle Scholar
  9. 9.
    Vallée, M., Ramparany, F., Vercouter, L.: Composition flexible de services d’objets communicants. In: UBIMOB 2005 (2005)Google Scholar
  10. 10.
    Popien, C., Meyer, B.: A service request description language. In: FORTE 1994, pp. 14–32. Chapman & Hall, Bern (1994)Google Scholar
  11. 11.
    Best, K.F.: Oasis standards work. Markup Lang. 3, 241–249 (2001)CrossRefGoogle Scholar
  12. 12.
    McIlraith, S.A., Son, T.C., Zeng, H.: Semantic web services. IEEE Intelligent Systems 16, 46–53 (2001)CrossRefGoogle Scholar
  13. 13.
    McGuinness, D.L., van Harmelen, F.: OWL Web Ontology Language Overview (2004), online: http://www.w3.org/TR/2004/REC-owl-features-20040210/
  14. 14.
    Staab, S., van der Aalst, W.M.P., Benjamins, V.R., Sheth, A.P., Miller, J.A., Bussler, C., Maedche, A., Fensel, D., Gannon, D.: Web services: Been there, done that? IEEE Intelligent Systems 18, 72–85 (2003)CrossRefGoogle Scholar
  15. 15.
    Sheshagiri, M., des Jardins, M., Finin, T.: A planner for composing services described in DAML-S. In: Proceedings of ICAPS 2003 Workshop on Planning for Web Services (2003)Google Scholar
  16. 16.
    Sycara, K.P., Paolucci, M., Ankolekar, A., Srinivasan, N.: Automated discovery, interaction and composition of semantic web services. J. Web Sem. 1, 27–46 (2003)Google Scholar
  17. 17.
    Vukovic, M., Robinson, P.: Adaptive, planning-based, web service composition for context awareness. In: Second Int. Conference on Pervasive Computing (2004)Google Scholar
  18. 18.
    Noia, T.D., Sciascio, E.D., Donini, F.M., Mongiello, M.: A system for principled matchmaking in an electronic marketplace. In: WWW, pp. 321–330 (2003)Google Scholar
  19. 19.
    Ma, J., Yang, L.T., Apduhan, B.O., Hunag, R., Barolli, L., Takizawa, M.: Towards a smart world and ubiquitous intelligence: A walktrough from smart things to smart hyperspaces and ubickids. International Journal of Pervasive Computing and Communications 1, 53–68 (2005)MATHCrossRefGoogle Scholar
  20. 20.
    Ranganathan, A., Campbell, R.H.: An infrastructure for context-awareness based on first order logic. Personal and Ubiquitous Computing 7, 353–364 (2003)CrossRefGoogle Scholar
  21. 21.
    Saadi, R., Pieson, J.M., Brunie, L.: APC: Access pass certificate. distrust certification model for large access in pervasive environment. In: IPCS 2005 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Pascal Bihler
    • 1
  • Lionel Brunie
    • 1
  • Vasile-Marian Scuturici
    • 1
  1. 1.Laboratoire LIRIS – UMR 5205INSA de LyonVilleurbanneFrance

Personalised recommendations