MaTRU: A New NTRU-Based Cryptosystem

  • Michael Coglianese
  • Bok-Min Goi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3797)


In this paper, we propose a new variant of the NTRU public key cryptosystem – the MaTRU cryptosystem. MaTRU works under the same general principles as the NTRU cryptosystem, except that it operates in a different ring with a different linear transformation for encryption and decryption. In particular, it operates in the ring of k by k matrices of polynomials in R = ℤ[X]/(X n − 1), whereas NTRU operates in the ring ℤ[X]/(X n − 1). Note that an instance of MaTRU has the same number of bits per message as an instance of NTRU when nk 2 = N. The improved efficiency of the linear transformation in MaTRU leads to respectable speed improvements by a factor of O(k) over NTRU at the cost of a somewhat larger public key.


Public key cryptosystems NTRU lattice based cryptography lattice attacks partial polynomial evaluation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Banks, W.D., Shparlinski, I.E.: A variant of NTRU with non-invertible polynomials. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002. LNCS, vol. 2551, pp. 62–70. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Coppersmith, D., Shamir, A.: Lattice attacks on NTRU. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 52–61. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  3. 3.
    Ding, J.: A new variant of the Matsumoto-Imai cryptosystem through perturbation. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 305–318. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. On Information Theory 22, 644–654 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Gentry, C.: Key recovery and message attacks on NTRU-composite. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 182–194. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Han, D., Hong, J., Han, J.W., Kwon, D.: Key recovery attacks on NTRU without ciphertext validation routine. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 274–284. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.: NTRUSign: Digital Signatures Using the NTRU Lattice. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A Ring-Based Public Key Cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Hoffstein, J., Silverman, J.H.: Optimizations for NTRU. In: Public-key Cryptography and Computational Number Theory, DeGruyter (2000) Available at [21]Google Scholar
  10. 10.
    Hoffstein, J., Silverman, J.H.: Random small hamming weight products with applications to cryptography. Discrete Applied Mathematics, special issue on the 2000 com2MaC workshop on cryptography 130(1), 37–49 (2003); Available at [21]zbMATHMathSciNetGoogle Scholar
  11. 11.
    Jaulmes, E., Joux, A.: A Chosen Ciphertext Attack on NTRU. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 20–35. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Koblitz, N.: Elliptic curves cryptosystems. Math. of Comp. 48, 203–209 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Karu, P., Loikkanen, J.: Practical comparison of fast public-key cryptosystems. Seminar on Network Security, Telecommunications Software and Multimedia Laboratory, Kelsinki University of Technology, Available at
  14. 14.
    Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-verification and message-encryption. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)Google Scholar
  15. 15.
    McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. JPL DSN Progress Report 42-44, pp. 114–116 (1978)Google Scholar
  16. 16.
    May, A., Silverman, J.H.: Dimension Reduction Methods for Convolution Modular Lattices. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 110–125. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Howgrave-Graham, N., Nguyen, P.Q., Pointcheval, D., Proos, J., Silverman, J.H., Singer, A., Whyte, W.: The Impact of Decryption Failures on the Security of NTRU Encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 226–246. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Howgrave-Graham, N., Silverman, J.H., Whyte, W.: NTRU Cryptosystems Technical Report #004, Version 2: A Meet-In-The-Middle Attack on an NTRU Private Key,
  19. 19.
    Nguyen, P.Q., Pointcheval, D.: Analysis and Improvements of NTRU Encryption Paddings. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 210–225. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Nguyen, P.Q., Stern, J.: The Two Faces of Lattices in Cryptology. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 148–180. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. 21.
    NTRU Cryptosystems. Technical reports, available at
  22. 22.
    Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public key cryptosystem. Communications of the ACM 21, 120–126 (1978)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Michael Coglianese
    • 1
  • Bok-Min Goi
    • 2
  1. 1.MacgregorBostonUSA
  2. 2.Centre for Cryptography and Information Security (CCIS), Faculty of EngineeringMultimedia UniversityCyberjayaMalaysia

Personalised recommendations