Advertisement

Compiler Analysis and Supports for Leakage Power Reduction on Microprocessors

  • Yi-Ping You
  • Chingren Lee
  • Jenq Kuen Lee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2481)

Abstract

Power leakage constitutes an increasing fraction of the total power consumption in modern semiconductor technologies. Recent research efforts also indicate architecture, compiler, and software participations can help reduce the switching activities (also known as dynamic power) on microprocessors. This raises interests on the issues to employ architecture and compiler efforts to reduce leakage power (also known as static power) on microprocessors. In this paper, we investigate the compiler analysis techniques related to reducing leakage power. The architecture model in our design is a system with an instruction set to support the control of power gating in the component levels. Our compiler gives an analysis framework to utilize the instruction to reduce the leakage power. We present a data flow analysis framework to estimate the component activities at fixed points of programs with the consideration of pipelines of architectures. We also give the equation for the compiler to decide if the employment of the power gating instructions on given program blocks will benefit the total energy reductions. As the duration of power gating on components on given program routines is related to program branches, we propose a set of scheduling policy include Basic_Blk_Sched, MIN_Path_Sched, and AVG_Path_Sched mechanisms and evaluate the effectiveness of those schemes. Our experiment is done by incorporating our compiler analysis and scheduling policy into SUIF compiler tools [32] and by simulating the energy consumptions on Wattch toolkits [6]. Experimental results show our mechanisms are effective in reducing leakage powers on microprocessors.

Keywords

Power Dissipation Schedule Policy Very Large Scale Integration Leakage Power Conditional Branch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aburto, A.: Collections of common benchmarks of FAQ of comp.benchmarks USENET newsgroup, ftp site: http://ftp.nosc.mail/pub/aburto
  2. 2.
    Aho, A., Sethi, R., Ullman, J.: Compilers Principles, Techniques, and Tools. Addison- Wesley, London (1985)Google Scholar
  3. 3.
    Alidina, M., Monteiro, J., Devadas, S., Ghosh, A., Papaefthymiou, M.: Precomputation-Based Sequential Logic Optimization for Low Power. In: Proc. of ICCAD 1994, pp. 74–81 (1994)Google Scholar
  4. 4.
    Benini, L., De Micheli, G.: State Assignment for Low Power Dissipation. IEEE Journal of Solid State Circuits 30(3), 258–268 (1995)CrossRefGoogle Scholar
  5. 5.
    Bellas, N., Hajj, I.N., Polychronopoulos, C.D.: Architectural and Compiler Techniques for Energy Reduction in High-Performance Microprocessors. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 317–326 (June 2000)Google Scholar
  6. 6.
    Brooks, D., Tiwari, V., Martonosi, M.: Wattch: a Framework for Architectural- Level Power Analysis and Optimizations. In: Proc. 27th. International Symposium on Computer Architecture, June 2000, pp. 83–94 (2000)Google Scholar
  7. 7.
    Burger, D., Austin, T.M.: The SimpleScalar Tool Set, Version 2.0. Computer Architecture News, 13–25 (June 1997)Google Scholar
  8. 8.
    Butts, J.A., Sohi, G.S.: A Static Power Model for Architects. In: Proceedings of the 33rd Annual IEEE/ACM International Symposium on Microarchitecture, December 2000, pp. 191–201 (2000)Google Scholar
  9. 9.
    Chang, R.G., Chuang, T.R., Lee, J.-K.: Efficient Support of Parallel Sparse Computation for Array Intrinsic Functions of Fortran 90. In: ACM International Conference on Supercomputing, Melbourne, Australia, July 13-17 (1998)Google Scholar
  10. 10.
    Chang, R.-G., Li, J.-S., Chuang, T.-R., Lee, J.K.: Probabilistic inference schemes for sparsity structures of Fortran 90 array intrinsics. In: International Conference on Parallel Processing, Spain (September 2001)Google Scholar
  11. 11.
    Chandrakasan, A.P., Sheng, S., Brodersen, R.W.: Low-Power CMOS Digital Design. IEEE Journal of Solid-State Circuits 27(4), 473–484 (1992)CrossRefGoogle Scholar
  12. 12.
    Chang, J.-M., Pedram, M.: Register Allocation and Binding for Low Power. In: Proceedings of Design Automaton Conference, San Francisco, USA (June 1995)Google Scholar
  13. 13.
    Compaq Computer Corporation, Alpha 21264 Microprocessor Hardware Reference Manual, EC-RJRZA-TE (July 1999)Google Scholar
  14. 14.
    De, V., Borkar, S.: Technology and design challenges for low power and high performance. In: Proc. of Int. Symp. Low Power Electronics and Design, pp. 163–168 (1999)Google Scholar
  15. 15.
    Hachtel, G., Hermida, M., Pardo, A., Poncino, M., Somenzi, F.: Re-Encoding Sequential Circuits to Reduce Power Dissipation. In: Proc. of ICCAD 1994, pp. 70–73 (1994)Google Scholar
  16. 16.
    Hadjiyiannis, G., Hanono, S., Devadas, S.: ISDL: An Instruction Set Description Language for Retargetability. In: Design Automation Conference (June 1997)Google Scholar
  17. 17.
    Hwang, Y.-S., Chen, P.-S., Lee, J.-K., Ju, R.: Probabilistic Points-to Analysis. In: Dietz, H.G. (ed.) LCPC 2001. LNCS, vol. 2624. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Hwang, G.-H., Lee, J.K., Ju, R.D.-C.: A Function-Composition Approach to Synthesize Fortran 90 Array Operations. Journal of Parallel and Distributed Computing 54, 1–47 (1998)zbMATHCrossRefGoogle Scholar
  19. 19.
    Hong, I., Dirovski, D., et al.: Power Optimization of Variable Voltage Core- Based Systems. In: Proc. of 35th DAC, pp. 176–181 (1998)Google Scholar
  20. 20.
    Horowitz, M., Indermaur, T., Gonzalez, R.: Low-Power Digital Design. In: Proceedings of the 1994 IEEE Symposium on Low Power Electronics, pp. 8–11 (1994)Google Scholar
  21. 21.
    Intel corporation, Pentium III Processor for the SC242 at 450 MHz to 1.13 GHz Datasheet, pp. 26–30Google Scholar
  22. 22.
    Kao, J.T., Chandrakasan, A.P.: Dual-threshold voltage techniques for lowpower digital circuits. IEEE Journal of Solid-state circuits 35(7), 1009–1018 (2000)CrossRefGoogle Scholar
  23. 23.
    Kaxiras, S., Hu, Z., Martonosi, M.: Cache Decay: Exploiting Generational Behavior to Reduce Cache Leakage Power. In: Proc. of the Int’l Symposium on Computer Architecture, pp. 240–251 (2001)Google Scholar
  24. 24.
    Lee, C., Lee, J.K., Hwang, T., Tsai, S.-C.: Compiler Optimization on Instruction Scheduling for Low Power. In: Proceedings of the 13th International Symposium on Systems Synthesis, September 2000, pp. 55–60 (2000)Google Scholar
  25. 25.
    Lee, M.T.-C., Tiwari, V., Malik, S., Fujita, M.: Power Analysis andMinimization Techniques for Embedded DSP Software. IEEE Transactions on VLSI Systems 5(1), 123–133 (1997)CrossRefGoogle Scholar
  26. 26.
    Powell, M.D., Yang, S.-H., Falsa, B., Roy, K., Vijaykumar, T.N.: Gated- Vdd: a Circuit Technique to Reduce Leakage in Deep-Submicron Cache Memories. In: ACM/IEEE International Symposium on Low Power Electronics and Design, ISLPED (2000)Google Scholar
  27. 27.
    Prasad, S.C., Roy, K.: Circuit Activity Driven Multilevel Logic Optimization for Low Power Reliable Operation. In: Proceedings of the EDAC 1993 EURO-ASIC, February 1993, pp. 368–372 (1993)Google Scholar
  28. 28.
    Rele, S., Pande, S., Onder, S., Gupta, R.: Optimizing Static Power Dissipation by Functional Units in Superscalar Processors. In: Horspool, R.N. (ed.) CC 2002. LNCS, vol. 2304, p. 261. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  29. 29.
    Roy, K., Prasad, S.C.: SYCLOP: Synthesis of CMOS Logic for Low Power Applications. In: Proceedings of the ICCD, pp. 464–467 (1992)Google Scholar
  30. 30.
    Roy, K.: Leakage Power reduction in Low-Voltage CMOS Designs. In: IEEE International Conference on Circuits and Systems, vol. 2, pp. 167–173 (1998)Google Scholar
  31. 31.
    Smith, M.D.: The SUIF Machine Library. In: Division of of Engineering and Applied Science. Harvard University, Cambridge (1998)Google Scholar
  32. 32.
    Stanford Compiler Group, The SUIF Library, Stanford Compiler Group, Stanford (March 1995)Google Scholar
  33. 33.
    Su, C.-L., Despain, A.M.: Cache Designs for Energy Efficiency. In: Proceedings of the 28th Annual Hawaii International Conference on System Sciences, pp. 306–315 (1995)Google Scholar
  34. 34.
    Tiwari, V., Donnelly, R., Malik, S., Gonzalez, R.: Dynamic Power Management for Microprocessors: A Case Study. In: Proceedings of the 10th International Conference on VLSI Design, pp. 185–192 (1997)Google Scholar
  35. 35.
    Tiwari, V., Singh, D., Rajgopal, S., Mehta, G., Patel, R., Baez, F.: Reducing Power in High-Performance Microprocessors. In: Proceedings of the Design Automaton Conference, pp. 732–737 (1998)Google Scholar
  36. 36.
    Thompson, S., Packan, P., Bohr, M.: MOS Scaling: Transistor Challenges for the 21st Century. Portland Technology Development, Intel. Corp. Intel. Technology Journal (Q3 1998)Google Scholar
  37. 37.
    Tsui, C.Y., Pedram, M., Despain, A.M.: Technology Decomposition and Mapping Targeting Low Power Dissipation. In: Proc. of 30th Design Automaton Conf., 68–73 (June 1993)Google Scholar
  38. 38.
    Wu, J.-Z., Lee, J.-K.: A bytecode optimizer to engineer bytecodes for performances. In: Midkiff, S.P., Moreira, J.E., Gupta, M., Chatterjee, S., Ferrante, J., Prins, J.F., Pugh, B., Tseng, C.-W. (eds.) LCPC 2000. LNCS, vol. 2017, p. 377. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  39. 39.
    You, Y.-P., Lee, C.-R., Lee, J.-K., Shih, W.-K.: Rea-Time Task Scheduling for Dynamically Variable Voltage Processors. In: IEEE workshop on Power Management for Real-Time and Embedded Systems (May 2001)Google Scholar
  40. 40.
    Zhang, W., Vijaykrishnan, N., Kandemir, M., Irwin, M.J., Duarte, D., Tsai, Y.: Exploiting VLIW Schedule Slacks for Dynamic and Leakage Energy Reduction. In: Proceedings of the Thirty-Fourth Annual International Symposium on Microarchitecture (MICRO-34), Austin, TX, December 2001, pp. 102–113 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Yi-Ping You
    • 1
  • Chingren Lee
    • 1
  • Jenq Kuen Lee
    • 1
  1. 1.Department of Computer ScienceNational Tsing Hua UniversityHsinchuTaiwan

Personalised recommendations