Adding Hand Motion to the Motion Capture Based Character Animation

  • Ge Jin
  • James Hahn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3804)


Most character motion capture data does not contain secondary motions like detailed hand motion, therefore the resultant animation looks unnatural due to the stiffness of hand motion. In this paper, we analyzed the pose space distance from the character’s motion capture data and used stepwise searching algorithm to find the key poses for hand motion synthesis. We adaptively changed the contrast of the local distance map to capture the small motions. If an appropriate hand motion data available, temporal alignment with speed matching and spatial warping of motion data can produce realistic hand motion. If there is no motion capture data available, key frame with cubic or gaussian based interpolation can be used to generate in between frames.


Hand Motion Motion Capture Secondary Motion Motion Capture Data Hermite Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Witkin, A., Popovic, Z.: Motion Warping. In: Proc. SIGGRAPH, pp. 105–118 (1995)Google Scholar
  2. 2.
    Wiley, D., Hahn, J.: Interpolation Synthesis of Articulated Figure Motion. IEEE CG&A 17(6), 39–45 (1997)Google Scholar
  3. 3.
    Gleicher, M.: Retargetting Motion to New Characters. In: Proc. SIGGRAPH, pp. 33–42 (1998)Google Scholar
  4. 4.
    Lee, J., Yong Shin, S.: A hierarchical approach to interactive motion editing for human-like figures. In: Proc. SIGGRAPH, pp. 39–48 (1999)Google Scholar
  5. 5.
    Bruderlin, A., Williams, L.: Motion signal processing. In: Proc. SIGGRAPH, pp. 97–104 (1995)Google Scholar
  6. 6.
    Unuma, M., Anjyo, K., Takeuchi, R.: Fourier Principles for Emotion-based Human Figure Animation. In: Proc. SIGGRAPH, pp. 91–96 (1995)Google Scholar
  7. 7.
    Perlin, K., Velho, L.: Live paint: painting with procedural multiscale textures. In: Proc. SIGGRAPH, pp. 153–160 (1995)Google Scholar
  8. 8.
    Kovar, L., Gleicher, M., Pighin, F.: Motion Graphs. In: Proc. SIGGRAPH, pp. 473–482 (2002)Google Scholar
  9. 9.
    Kovar, L., Gleicher, M.: Automated extraction and parameterization of motions in large data sets. In: Proc. SIGGRAPH, pp. 559–568 (2004)Google Scholar
  10. 10.
    Assa, J., Caspi, Y., Cohen-Or, D.: Action Synopsis: Pose Selection and Illustration. In: Proc. SIGGRAPH (2005)Google Scholar
  11. 11.
    Rijpkema, H., Girard, M.: Computer animation of knowledge-based human grasping. In: Proc. SIGGRAPH, pp. 339–348 (1991)Google Scholar
  12. 12.
    Lin, J., Wu, Y., Huang, T.: Modeling the Constraints of Human Hand Motion. In: Proc. of the Workshop on Human Motion, pp. 121–126 (2000)Google Scholar
  13. 13.
    ElKoura, G., Singh, K.: Handrix: animating the human hand. In: Proc. of ACM SIGGRAPH/Eurographics SCA, pp. 110–119 (2003)Google Scholar
  14. 14.
    Kim, J., Cordier, F., Magnenat-Thalmann, N.: Neural Network-Based Violinist’s Hand Animation. In: Proc. of International Conference on Computer Graphics, pp. 37–41 (2000)Google Scholar
  15. 15.
    Albrecht, I., Haber, J., Seidel, H.: Construction and animation of anatomically based human hand models. In: Proc. of ACM SIGGRAPH/Eurographics SCA, pp. 26–27 (2003)Google Scholar
  16. 16.
    Kurihara, T., Miyata, N.: Modeling deformable human hands from medical images. In: Proc. of ACM SIGGRAPH/Eurographics SCA, pp. 355–363 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ge Jin
    • 1
  • James Hahn
    • 1
  1. 1.Computer Science DepartmentGeorge Washington UniversityWashington DCUSA

Personalised recommendations