Face Verification in Polar Frequency Domain: A Biologically Motivated Approach

  • Yossi Zana
  • Roberto M. Cesar-Jr
  • Rogerio S. Feris
  • Matthew Turk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3804)


We present a novel local-based face verification system whose components are analogous to those of biological systems. In the proposed system, after global registration and normalization, three eye regions are converted from the spatial to polar frequency domain by a Fourier-Bessel Transform. The resulting representations are embedded in a dissimilarity space, where each image is represented by its distance to all the other images. In this dissimilarity space a Pseudo-Fisher discriminator is built. ROC and equal error rate verification test results on the FERET database showed that the system performed at least as state-of-the-art methods and better than a system based on polar Fourier features. The local-based system is especially robust to facial expression and age variations, but sensitive to registration errors.


Face Recognition Linear Discriminant Analysis Human Visual System Equal Error Rate Gabor Wavelet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    DeValois, R.L., DeValois, K.K.: Spatial Vision. Oxford Sciences Pub. (1990)Google Scholar
  2. 2.
    Perret, D.I., Rolls, E., Caan, W.: Visual neurons responsive to faces in the monkey temporal cortex. Experimental Brain Research 47, 329–342 (1982)CrossRefGoogle Scholar
  3. 3.
    Gallant, J.L., Braun, J., VanEssen, D.: Selectivity for polar, hyperbolic, and cartesian gratings in macaque visual cortex. Science 259, 100–103 (1993)CrossRefGoogle Scholar
  4. 4.
    Wilson, H., Wilkinson, F.: Detection of global structure in glass patterns: implications for form vision. Vision Research 38, 2933–2947 (1998)CrossRefGoogle Scholar
  5. 5.
    Schwartz, E.: Spatial mapping in primate sensory projection: analytic structure and relevance to perception. Biological Cybernetics 25, 181–194 (1977)CrossRefGoogle Scholar
  6. 6.
    Tistarelli, M., Grosso, E.: Active vision-based face recognition issues, applications and techniques. In: Wechsler, H., et al. (eds.) NatoAsi Advanced Study on Face Recognition, vol. F-163, pp. 262–286. Springer, Berlin (1998)Google Scholar
  7. 7.
    Bowman, F.: Introduction to Bessel functions. Dover Pub., New York (1958)zbMATHGoogle Scholar
  8. 8.
    Fox, P., Cheng, J., Lu, J.: Theory and experiment of Fourier-Bessel field calculation and tuning of a pulsed wave annular array. Journal of the Acoustical Society of America 113, 2412–2423 (2003)CrossRefGoogle Scholar
  9. 9.
    Zana, Y., Cesar-Jr, R.M.: Face recognition based on polar frequency features. ACM Transactions on Applied Perception 2 (2005) (to appear)Google Scholar
  10. 10.
    Duin, R., DeRidder, D., Tax, D.: Experiments with a featureless approach to pattern recognition. Pattern Recognition Letters 18, 1159–1166 (1997)CrossRefGoogle Scholar
  11. 11.
    Scurichina, M., Duin, R.: Stabilizing classifiers for very small sample sizes. In: Proceedings of the 13th International Conference on Pattern Recognition, vol. 2, Track B, pp. 891–896 (1996)Google Scholar
  12. 12.
    Phillips, P., Wechsler, H., Huang, J., Rauss, P.: The FERET database and evaluation procedure for face recognition algorithms. Image and Vision Computing Journal 16, 295–306 (1998)CrossRefGoogle Scholar
  13. 13.
    Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3, 71–86 (1991)CrossRefGoogle Scholar
  14. 14.
    Wiskott, L., Fellous, J., Kruger, N., VonDerMalsburg, C.: Face recognition by elastic bunch graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 775–779 (1997)CrossRefGoogle Scholar
  15. 15.
    Etemad, K., Chellappa, R.: Discriminant analysis for recognition of human face images. Journal of the Optical Society of America A-Optics Image Science and Vision 14, 1724–1733 (1997)CrossRefGoogle Scholar
  16. 16.
    Moghaddam, B., Jebara, T., Pentland, A.: Bayesian face recognition. Pattern Recognition 33, 1771–1782 (2000)CrossRefGoogle Scholar
  17. 17.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 511–518 (2001)Google Scholar
  18. 18.
    Cootes, T., Edwards, G., Taylor, C.: Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 681–685 (2001)CrossRefGoogle Scholar
  19. 19.
    Kothari, R., Mitchell, J.: Detection of eye locations in unconstrained visual images. In: IEEE International Conference on Image Processing, pp. 519–522 (1996)Google Scholar
  20. 20.
    Cabrera, J., Falcón, A., Hernández, F., Méndez, J.: A systematic method for exploring contour segment descriptions. Cybernetics and Systems 23, 241–270 (1992)CrossRefGoogle Scholar
  21. 21.
    Martfnez, A.: Recognizing imprecisely localized, partially occluded, and expression variant faces from a single sample per class. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 748–762 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Yossi Zana
    • 1
  • Roberto M. Cesar-Jr
    • 1
  • Rogerio S. Feris
    • 2
  • Matthew Turk
    • 2
  1. 1.Dept. of Computer ScienceIME-USPBrazil
  2. 2.University of CaliforniaSanta Barbara

Personalised recommendations