Advertisement

Applying Biological Paradigms to Emerge Behaviour in RoboCup Rescue Team

  • Francisco Reinaldo
  • Joao Certo
  • Nuno Cordeiro
  • Luis P. Reis
  • Rui Camacho
  • Nuno Lau
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3808)

Abstract

This paper presents a hybrid behaviour process for performing collaborative tasks and coordination capabilities in a rescue team. RoboCup Rescue simulator and its associated international competition are used as the testbed for our proposal. Unlike other published work in this field one of our main concerns is having good results on RoboCup Rescue championships by emerging behaviour in agents using a biological paradigm. The benefit comes from the hierarchic and parallel organisation of the mammalian brain. In our behaviour process, Artificial Neural Networks are used in order to make agents capable of learning information from the environment. This allows agents to improve several algorithms like their Path Finding Algorithm to find the shortest path between two points. Also, we aim to filter the most important messages that arise from the environment, to make the right choice on the best path planning among many alternatives, in a short time. A policy action was implemented using Kohonen’s network, Dijkstra’s and D* algorithm. This policy has achieved good results in our tests, getting our team classified for RoboCup Rescue Simulation League 2005.

Keywords

Mobile Agent Centre Agent Rescue Team Fire Brigade Team Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amraii, S.A., Behsaz, B., Gheibi, H., Izadi, M., Janzadeh, H., Molazem, F., Rahimi, A., Ghinani, M.T., Vosoughpour, H.: S.O.S. 2004: an attempt towards a multi-agent rescue team, Amirkabir Univ. of Tecnology, Tehran, Iran (2004)Google Scholar
  2. 2.
    Bowling, M.: Robocup Rescue: Agent Development Kit, Dept. of Comp. Science, Univ. of Alberta, Alberta, PDF Doc, Avaliabe at http://www-2.cs.cmu.edu/~mhb/research/rescue/
  3. 3.
    d’Agostino, F., Farinelli, A., Grisetti, G., Iocchi, L., Nardi, D.: Monitoring and information fusion for search and rescue operations in large-scale disasters. In: Proceedings of Int. Conf. Information Fusion, AnnaPolis, July 2002, pp. 672–679 (2002)Google Scholar
  4. 4.
    Dijkstra, E.W.: A note on two problems in connection with graphs. In: Numerische Mathematik, vol. 1, pp. 269–271. Mathematisch Centrum, Amsterdam (1959)Google Scholar
  5. 5.
    Hamraz, S.H., Feyzabadi, S.S., Motlagh, A.K.: Caspian RoboCup Rescue Simulation Agent: Team Description (2005)Google Scholar
  6. 6.
    Howden, N., Rnnquist, R.: Jack Intelligent Agents - Summary of an agent infrastructure. In: Proceedings of 5th Int. Conf. on Autonomous Agents, Montral, Canada (2001)Google Scholar
  7. 7.
    Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E., Matsubara, H.: RoboCup: A Challenge Problem for AI and Robotics. AI Magazine 18(1), 73–85 (1997)Google Scholar
  8. 8.
    Kitano, H., Hahn, W., Hunter, L., Oka, R., Wah, B., Yokoi, T.: Grand challenge AI applications. In: Proceedings of 13th Int. Conf. on Artificial Intelligence, Chambery, Fr, pp. 1677–1683 (1993)Google Scholar
  9. 9.
    Kleiner, A., Brenner, M.: ResQ Freiburg: Deliberative Limitation of Damage, Univ. of Freiburg, Freiburg im Breisgau, Germany, PDF Doc (2004), Avaliable at http://www.informatik.uni-freiburg.de/rescue
  10. 10.
    Kohonen, T.: Self-Organizing Maps. Springer, Berlin (2001)zbMATHGoogle Scholar
  11. 11.
    Kolb, B., Whishaw, I.Q.: An Introduction to Brain and Behavior, 2nd edn. Worth Publishers Inc., New York (2005)Google Scholar
  12. 12.
    Lau, N., Reis, L.P.: FC Portugal Homepage, University of Porto, Online at, http://www.ieeta.pt/robocup (visited in October 5, 2004)
  13. 13.
    Lau, N., Reis, L.P., Reinaldo, F.: FC Portugal 2005 Rescue Team Description: Adapting Simulated Soccer Coordination Methodologies to the Search and Rescue Domain, Univ. of Porto, Porto, PDF Doc. (2005), Avaliable at http://paginas.fe.up.pt/~lpreis/fcportugal/rescue
  14. 14.
    Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., Thrun, S.: Anytime Dynamic A*: An Anytime, Replanning Algorithm. In: Proceedings of Int. Conf. on Automated Planning and Scheduling (ICAPS), June 2005, p. 10 (2005)Google Scholar
  15. 15.
    Paquet, S., Bernier, N., Chaib-draa, B.: DAMAS-Rescue Description Paper. In: Proceedings of RoboCup 2004: Robot Soccer World Cup VIII, p. 12. Springer, Berlin (2004)Google Scholar
  16. 16.
    Reinaldo, F.A.F.: Projecting a framework and programming a system for development of modular and heterogeneous artificial neural networks, Dept. of Computer Science, Federal Univ. of Santa Catarina, Florianópolis, MSc Thesis (2003)Google Scholar
  17. 17.
    Reis, L.P., Lau, N.: FC Portugal Team Description: RoboCup 2000 Simulation League Champion. In: Stone, P., Balch, T., Kraetzschmar, G.K. (eds.) RoboCup 2000. LNCS (LNAI), vol. 2019, pp. 29–40. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Reis, L.P., Lau, N.: COACH UNILANG - A Standard Language for Coaching a (Robo)Soccer Team. In: Birk, A., Coradeschi, S., Tadokoro, S. (eds.) RoboCup 2001. LNCS (LNAI), vol. 2377, pp. 183–192. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Reis, L.P., Lau, N., Costa, P., Nabais, A., Rentes, M., Baixinho, L., Oliveira, E., Moreira, A.P.: FC Portugal: New Coordination Methodologies in RoboCup Legged League. Univ. of Porto, Porto, Team Description Paper 2005 (2005)Google Scholar
  20. 20.
    Reis, L.P., Lau, N., Oliveira, E.: Situation Based Strategic Positioning for Coordinating a Simulated RoboSoccer Team. In: Proceedings of Balancing Reactive and Social Deliberation in MAS, Berlin, pp. 175–197 (2001)Google Scholar
  21. 21.
    SOS, Official SOS Home Page, Amirkabir University of Technology, Online at, http://ce.aut.ac.ir/sos/ (visited in February 23, 2005)
  22. 22.
    Stentz, A.: The Focussed D* Algorithm for Real-Time Replanning. In: Proceedings of Int. Conf. on Artificial Intelligence, Montreal, Canada, August 20-25, pp. 1652–1659 (1995)Google Scholar
  23. 23.
    Tadokoro, S., Kitano, H., Takahashi, T., Noda, I., Matsubara, H., Shinjoh, A., Koto, T., Takeuchi, I., Takahashi, H., Matsuno, F., Hatayama, M., Nobe, J., Shimada, S.: RoboCup-Rescue: An international cooperative research project of robotics and AI for the disaster mitigation problem. In: Proceedings of Unmanned Ground Vehicle Technology II, Orlando, FL, USA, pp. 303–312 (2000)Google Scholar
  24. 24.
    Takahashi, T., Nobe, J.: Evaluation methods for rescue activities by agents and a disaster prevention plan. In: Proceedings of 41st SICE, pp. 858–859 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Francisco Reinaldo
    • 1
    • 2
  • Joao Certo
    • 1
  • Nuno Cordeiro
    • 1
  • Luis P. Reis
    • 1
  • Rui Camacho
    • 1
  • Nuno Lau
    • 3
  1. 1.LIACC-NIAD&R, Faculty of EngineeringUniversity of PortoPortoPortugal
  2. 2.GIC, Dept. of Computer ScienceUnilesteMGCel. FabricianoBrasil
  3. 3.IEETA/DETUniversity of AveiroAveiroPortugal

Personalised recommendations