Minimal Perturbation Problem in Course Timetabling

  • Tomáš Müller
  • Hana Rudová
  • Roman Barták
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3616)

Abstract

Many real-life problems are dynamic, with changes in the problem definition occurring after a solution to the initial formulation has been reached. A minimal perturbation problem incorporates these changes, along with the initial solution, as a new problem whose solution must be as close as possible to the initial solution. A new iterative forward search algorithm is proposed to solve minimal perturbation problems. Significant improvements to the solution quality are achieved by including new conflict-based statistics in this algorithm. The proposed methods were applied to find a new solution to an existing large scale class timetabling problem at Purdue University, incorporating the initial solution and additional input changes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barták, R., Müller, T., Rudová, H.: A New Approach to Modeling and Solving Minimal Perturbation Problems. In: Apt, K.R., Fages, F., Rossi, F., Szeredi, P., Váncza, J. (eds.) CSCLP 2003. LNCS (LNAI), vol. 3010, pp. 233–249. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Barták, R., Rudová, H.: Limited Assignments: A New Cutoff Strategy for Incomplete Depth-First Search. In: Applied Computing, pp. 388–392. ACM, New York (2005)Google Scholar
  3. 3.
    Cambazard, H., Demazeau, F., Jussien, N., David, P.: Interactively Solving School Timetabling Problems Using Extensions of Constraint Programming. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 107–124. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Dechter, R.: Constraint Processing. Morgan Kaufmann, San Mateo (2003)Google Scholar
  5. 5.
    Dechter, R., Frost, D.: Backjump-Based Backtracking for Constraint Satisfaction Problems. Artif. Intell. 136, 147–188 (2002)Google Scholar
  6. 6.
    Elkhyari, A., Guéret, C., Jussien, N.: Solving Dynamic Timetabling Problems as Dynamic Resource Constrained Project Scheduling Problems Using New Constraint Programming Tools. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 39–59. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Guéret, C., Jussien, N., Boizumault, P., Prins, C.: Building University Timetables Using Constraint Logic Programming. In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 130–145. Springer, Heidelberg (1996)Google Scholar
  8. 8.
    Jussien, N., Lhomme, O.: Local Search with Constraint Propagation and Conflict-Based Heuristics. Artif. Intell. 139, 21–45 (2002)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Kocjan, W.: Dynamic Scheduling: State of the Art Report. Technical Report T2002:28. SICS (2002)Google Scholar
  10. 10.
    Michalewicz, Z., Fogel, D.B.: How to Solve It: Modern Heuristics. Springer, Berlin (2000)Google Scholar
  11. 11.
    Miguel, I.: Dynamic Flexible Constraint Satisfaction and its Application to AI Planning. Springer, Berlin (2004)Google Scholar
  12. 12.
    Müller, T., Barták, R.: Interactive Timetabling: Concepts, Techniques, and Practical Results. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 58–72. Springer, Heidelberg (2003)Google Scholar
  13. 13.
    Piechowiak, S., Ma, J., Mandiau, R.: EDT-2004: An Open Interactive Timetabling Tool. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 34–50. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Ran, Y., Roos, N., van den Herik, J.: Approaches to Find a Near-Minimal Change Solution for Dynamic CSPs. In: Fourth International Workshop on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimisation Problems, pp. 373–387 (2002)Google Scholar
  15. 15.
    Rudová, H., Murray, K.: University Course Timetabling with Soft Constraints. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 310–328. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    El Sakkout, H., Wallace, M.: Probe Backtrack Search for Minimal Perturbation in Dynamic Scheduling. Constraints 4, 359–388 (2000)CrossRefGoogle Scholar
  17. 17.
    Verfaillie, G., Jussien, N.: Dynamic Constraint Solving. A tutorial including commented bibliography presented at CP 2003 (2003), See http://www.emn.fr/x-info/jussien/CP03tutorial/
  18. 18.
    Verfaillie, G., Jussien, N.: Constraint Solving in Uncertain and Dynamic Environments: A Survey. Constraints 10, 253–281 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Tomáš Müller
    • 1
  • Hana Rudová
    • 2
  • Roman Barták
    • 1
  1. 1.Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic
  2. 2.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic

Personalised recommendations