A Tabu Search Hyper-heuristic Approach to the Examination Timetabling Problem at the MARA University of Technology

  • Graham Kendall
  • Naimah Mohd Hussin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3616)

Abstract

In this paper we introduce an examination timetabling problem from the MARA University of Technology (UiTM). UiTM is the largest university in Malaysia. It has 13 branch campuses and offers 144 programmes, delivered by 18 faculties. This dataset differs from the others reported in the literature due to weekend constraints that have to be observed. We present their examination timetabling problem with respect to its size, complexity and constraints. We analyse their real-world data, and produce solutions utilising a tabu-search-based hyper-heuristic. Since this is a new dataset, and no solutions have been published in the literature, we can only compare our results with an existing manual solution. We find that our solution is at least 80% better with respect to proximity cost. We also compare our approach against a benchmark dataset and show that our method is able to produce good quality results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burke, E.K., Newall, J.P.: Solving Examination Timetabling Problems Through Adaption of Heuristic Orderings. Ann. Oper. Res. 129, 107–134 (2004)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Burke, E.K., Newall, J.P.: Enhancing Timetable Solutions with Local Search Methods. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 195–206. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Burke, E.K., Petrovic, S.: Recent Research Directions in Automated Timetabling. Eur. J. Oper. Res. 140, 266–280 (2002)MATHCrossRefGoogle Scholar
  4. 4.
    Burke, E.K., Landa Silva, J.D., Soubeiga, E.: Multi-objective Hyper-heuristic Approaches for Space Allocation and Timetabling. In: Ibaraki, T., Nonobe, K., Yagiura, M. (eds.) Meta-heuristics: Progress as Real Problem Solvers. Springer, Berlin (2005)Google Scholar
  5. 5.
    Burke, E.K., Meisels, A., Petrovic, S., Qu, R.A.: Graph-Based Hyper-heuristic for Timetabling Problems. Eur. J. Oper. Res. (2005) (accepted for publication)Google Scholar
  6. 6.
    Burke, E.K., Petrovic, S., Qu, R.: Case Based Heuristic Selection for Timetabling Problems. J. Scheduling (2005) (accepted for publication)Google Scholar
  7. 7.
    Burke, E.K., Hart, E., Kendall, G., Newall, J., Ross, P., Schulenburg, S.: Hyper-Heuristics: An Emerging Direction in Modern Search Technology. In: Glover, F., Kochenberger, G. (eds.) Handbook of Meta-Heuristics, ch. 16, pp. 457–474. Kluwer, Dordrecht (2003)Google Scholar
  8. 8.
    Burke, E.K., Jackson, K.S., Kingston, J.H., Weare, R.F.: Automated Timetabling: The State of the Art. Comput. J. 40, 565–571 (1997)Google Scholar
  9. 9.
    Burke, E.K., Kendall, G., Soubeiga, E.: A Tabu-Search Hyperheuristic for Timetabling and Rostering. J. Heuristics 9, 451–470 (2003b)Google Scholar
  10. 10.
    Burke, E.K., Elliman, D.G., Ford, P.H., Weare, R.F.: Examination Timetabling in British Universities—A Survey. In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 76–92. Springer, Heidelberg (1996)Google Scholar
  11. 11.
    Burke, E.K., Newall, J.P., Weare, R.: Initialisation Strategies and Diversity in Evolutionary Timetabling. IEEE Trans. on Evol. Comput. 6, 81–103 (1998)CrossRefGoogle Scholar
  12. 12.
    Burke, E.K., Newall, J.P., Weare, R.F.: A Memetic Algorithm for University Exam Timetabling. In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 496–503. Springer, Heidelberg (1996)Google Scholar
  13. 13.
    Burke, E.K., Bykov, Y., Newall, J., Petrovic, S.: A Time-Predefined Local Search Approach to Exam Timetabling Problems. IIE Trans. on Oper. Eng. 36, 509–528 (2004)Google Scholar
  14. 14.
    Caprara, A., Fischetti, M., Guida, P.L., Monaci, M., Sacco, G., Toth, P.: Solution of Real-World Train Timetabling Problems. In: Proceedings of the 34th Annual Hawaii International Conference on System Sciences, pp. 1057–1066 (2001)Google Scholar
  15. 15.
    Carter, M.W.: A Survey of Practical Applications of Examination Timetabling Algorithms. Oper. Res. Soc. Am. 34, 193–202 (1986)Google Scholar
  16. 16.
    Carter, M.W.: EXAMINE: A General Examination Timetabling System. In: Burke, E.K., Carter, M. (eds.) PATAT 1997. LNCS, vol. 1408, pp. 347–363. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  17. 17.
    Carter, M.W., Laporte, G.: Recent Developments in Practical Examination Timetabling. In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 3–21. Springer, Heidelberg (1996)Google Scholar
  18. 18.
    Carter, M.W., Laporte, G., Lee, S.Y.: Examination Timetabling: Algorithmic Strategies and Applications. J. Oper. Res. Soc. 47, 373–383 (1996)Google Scholar
  19. 19.
    Comm, C.L., Mathaisel, D.F.X.: College Course Scheduling. A Market for Computer Software Support. J. Res. Comput. Educ. 21, 187–195 (1988)Google Scholar
  20. 20.
    Cowling, P., Kendall, G., Mohd Hussin, N.: A Survey and Case Study of Practical Examination Timetabling Problems. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 258–261. Springer, Heidelberg (2003)Google Scholar
  21. 21.
    Di Gaspero, L., Schaerf, A.: A Tabu Search Techniques for Examination Timetabling. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 104–117. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Dueck, G.: New Optimization Heuristics for the Great Deluge Algorithm and the Record-to-Record Travel. J. Comput. Phys. 104, 86–92 (1993)Google Scholar
  23. 23.
    Forster, G.: Syllabus Plus: A State-of-the-Art Planning and Scheduling System for Universities and Colleges. In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 244–252. Springer, Heidelberg (1996)Google Scholar
  24. 24.
    Goltz, H.-J., Matzke, D.: ConBaTT—Constraint-Based Timetabling. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, p. 491. Springer, Heidelberg (2001)Google Scholar
  25. 25.
    Isaai, M.T., Singh, M.G.: Hybrid Applications of Constraint Satisfaction and Meta-heuristics to Railway Timetabling: A Comparative Study. IEEE Trans. on Systems, Man and Cybernetics, Part C: Applications and Reviews. 31, 87–95 (2001)Google Scholar
  26. 26.
    JTAP: Central Timetabling By Computer: A review of Existing Information. Report by JISC Technology Applications Programme (June 1998), The report can be downloaded from http://www.jisc.ac.uk/uploaded_document/jtap-021.doc
  27. 27.
    Kendall, G., Mohd Hussin, N.: An Investigation of a Tabu Search Based Hyper-heuristic for Examination Timetabling. In: Kendall, G., et al. (eds.) Multidisciplinary Scheduling: Theory and Applications, pp. 309–328. Springer, Berlin (2005); An extended abstract of this paper also appeared in the Proceedings of the 1st Multidisciplinary International Conference on Scheduling: Theory and Applications, pp. 226–233 (MISTA 2003) CrossRefGoogle Scholar
  28. 28.
    McCollum, B., Newall, J.: Introducing Optime: Examination Timetabling Software. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, p. 485. Springer, Heidelberg (2001)Google Scholar
  29. 29.
    Merlot, L.T.G., Boland, N., Hughes, B.D., Stuckey, P.J.: A Hybrid Algorithm for the Examination Timetabling Problem. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 207–231. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  30. 30.
    Petrovic, S., Burke, E.K.: University Timetabling. In: Leung, J. (ed.) The Handbook of Scheduling: Algorithms, Models, and Performance Analysis, ch. 45, CRC Press, Boca Raton (2004)Google Scholar
  31. 31.
    Petrovic, S., Bykov, Y.: A Multiobjective Optimisation Technique for Exam Timetabling Based on Trajectories. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740, pp. 181–194. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  32. 32.
    Rogalla, S.: CELCAT: A Practical Solution to Scheduling Problems, Corbett Engineering, UK. In: Burke, E.K., Carter, M. (eds.) PATAT 1997. LNCS, vol. 1408, p. 368. Springer, Heidelberg (1998)Google Scholar
  33. 33.
    Schaerf, A.: A Survey of Automated Timetabling. Artif. Intell. Rev. 13, 87–127 (1999)Google Scholar
  34. 34.
    Terashima-Marín, H., Ross, P.M., Valenzuela-Rendón, M.: Evolution of Constraint Satisfaction Strategies in Examination Timetabling. In: Proceedings of the Genetic and Evolutionary Conference, pp. 635–642 (1999)Google Scholar
  35. 35.
    Trick, M.A.: A Schedule-then-Break Approach to Sports Timetabling. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 242–253. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  36. 36.
    Ya, W., Baharudin, N.: Interview with Manager and System Analyst. Examination Unit, Center for Integrated Information System, MARA University of Technology (August 2001)Google Scholar
  37. 37.
    White, G.M., Xie, B.S.: Examination Timetables and Tabu Search with Longer Term Memory. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 85–103. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  38. 38.
    Yang, Y., Petrovic, S.: A Novel Similarity Measure for Heuristic Selection in Examination Timetabling. In: Burke, E.K., Trick, M. (eds.) Proceedings of the 5th International Conference on the Practice and Theory of Automated Timetabling, pp. 377–396 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Graham Kendall
    • 1
  • Naimah Mohd Hussin
    • 2
  1. 1.Automated Scheduling, Optimisation and Planning (ASAP) Research Group, School of Computer Science and Information TechnologyUniversity of NottinghamNottinghamUK
  2. 2.Faculty of Information Technology and Quantitative SciencesMARA University of TechnologyShah Alam, Selangor Darul EhsanMalaysia

Personalised recommendations