Advertisement

Universally Convertible Directed Signatures

  • Fabien Laguillaumie
  • Pascal Paillier
  • Damien Vergnaud
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3788)

Abstract

Many variants of Chaum and van Antwerpen’s undeniable signatures have been proposed to achieve specific properties desired in real-world applications of cryptography. Among them, directed signatures were introduced by Lim and Lee in 1993. Directed signatures differ from the well-known confirmer signatures in that the signer has the simultaneous abilities to confirm, deny and individually convert a signature. The universal conversion of these signatures has remained an open problem since their introduction in 1993. This paper provides a positive answer to this quest by showing a very efficient design for universally convertible directed signatures (UCDS) both in terms of computational complexity and signature size. Our construction relies on the so-called xyz-trick applicable to bilinear map groups. We define proper security notions for UCDS schemes and show that our construction is secure in the random oracle model, under computational assumptions close to the CDH and DDH assumptions. Finally, we introduce and realize traceable universally convertible directed signatures where a master tracing key allows to link signatures to their direction.

Keywords

Signature Scheme Random Oracle Directed Signature Random Oracle Model Public Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Araki, S., Uehara, S., Imamura, K.: The Limited Verifier Signature and Its Application. IEICE Trans. Fundamentals E82-A (1), 63–68 (1999)Google Scholar
  2. 2.
    Asokan, N., Shoup, V., Waidner, M.: Optimistic Fair Exchange of Digital Signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 591–606. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 273–289. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Bellare, M., Rogaway, P.: Random Oracles are Practical: a Paradigm for Designing Efficient Protocols. In: Proc. of 1st ACM Conference on Computer and Communications Security, pp. 62–73 (1993)Google Scholar
  5. 5.
    Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Franklin, M.: Identity-based Encryption from the Weil Pairing. SIAM J. Computing 32(3), 586–615 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Boyar, J., Chaum, D., Damgå, I.B.: Convertible Undeniable Signatures. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 189–205. Springer, Heidelberg (1991)Google Scholar
  8. 8.
    Bresson, E., Stern, J.: Proofs of Knowledge for Non-Monotone Discrete-Log Formulae and Applications. In: Chan, A.H., Gligor, V.D. (eds.) ISC 2002. LNCS, vol. 2433, pp. 272–288. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Camenisch, J., Michels, M.: Confirmer Signature Schemes Secure against Adaptive Adversaries. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 243–258. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Camenisch, J., Stadler, M.: Efficient Group Signature Schemes for Large Groups. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)Google Scholar
  11. 11.
    Chaum, D.: Designated Confirmer Signatures. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 86–91. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  12. 12.
    Chaum, D., van Antwerpen, H.: Undeniable Signatures. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 212–216. Springer, Heidelberg (1990)Google Scholar
  13. 13.
    Chaum, D., van Heijst, E., Pfitzmann, B.: Cryptographically Strong Undeniable Signatures Unconditionally Secure for the Signer. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 470–484. Springer, Heidelberg (1992)Google Scholar
  14. 14.
    Damgå, I.: Towards Practical Public Key Systems Secure Against Chosen Ciphertext Attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456. Springer, Heidelberg (1992)Google Scholar
  15. 15.
    Franklin, M.K., Reiter, M.K.: Verifiable Signature Sharing. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 50–63. Springer, Heidelberg (1995)Google Scholar
  16. 16.
    Goldwasser, S., Micali, S., Rivest, R.: A Digital Signature Scheme Secure against Adaptive Chosen-Message Attacks. SIAM J. Computing 17(2), 281–308 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Goldwasser, S., Waisbard, E.: Transformation of Digital Signature Schemes into Designated Confirmer Signature Schemes. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 77–100. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Jakobsson, M., Sako, K., Impagliazzo, R.: Designated Verifier Proofs and their Applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–154. Springer, Heidelberg (1996)Google Scholar
  19. 19.
    Kiayias, A., Tsiounis, Y., Yung, M.: Traceable Signatures. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Laguillaumie, F., Vergnaud, D.: Time-Selective Convertible Undeniable Signatures. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 154–171. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Lim, C.H., Lee, P.J.: Modified Maurer-Yacobi’s Scheme and its Applications. In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp. 308–323. Springer, Heidelberg (1993)Google Scholar
  22. 22.
    Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind Signatures. J. Cryptology 13(3), 361–396 (2000)zbMATHCrossRefGoogle Scholar
  23. 23.
    Zhang, F., Kim, K.: A Universal Forgery on Araki et al.’s Convertible Limited Verifier Signature Scheme. IEICE Trans. Fundamentals E86-A (2), 515–516 (2003)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Fabien Laguillaumie
    • 1
    • 3
  • Pascal Paillier
    • 2
  • Damien Vergnaud
    • 1
  1. 1.Laboratoire de Mathématiques Nicolas OresmeUniversité de CaenCaenFrance
  2. 2.Gemplus Card InternationalCryptography GroupIssy-les-MoulineauxFrance
  3. 3.Projet TANC – INRIA Futurs, Laboratoire d’informatique (LIX)École polytechniquePalaiseauFrance

Personalised recommendations