The Relationship Between Reasoning About Privacy and Default Logics

  • Jürgen Dix
  • Wolfgang Faber
  • V. S. Subrahmanian
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3835)

Abstract

There is now an incredible wealth of data about individuals, businesses and organisations. This data is freely available over the Internet to almost anyone willing to pay for it, independently of whether they are identity thieves or credit card scam artists or legitimate users. This has led to a growing need for privacy. In this paper, we first present a simple logical model of privacy. We then show that the problem of privacy may be reduced to that of brave reasoning in default logic theories, thus reducing this important problem to a well understood reasoning paradigm. By leveraging this reduction, we are able to develop an efficient privacy preservation algorithm and a set of complexity results for privacy preservation. Efficient systems based on answer set programming are available to implement our algorithm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cadoli, M., Eiter, T., Gottlob, G.: Default Logic as a Query Language. IEEE Transactions on Knowledge and Data Engineering 9, 448–463 (1997)CrossRefGoogle Scholar
  2. 2.
    Dix, J.: Default Theories of Poole-Type and a Method for Constructing Cumulative Versions of Default Logic. In: Neumann, B. (ed.) Proc. of 10th European Conf. on Artificial Intelligence ECAI 1992, pp. 289–293. John Wiley & Sons, Chichester (1992)Google Scholar
  3. 3.
    Marek, W., Truszczyński, M.: Nonmonotonic Logics; Context-Dependent Reasoning, 1st edn. Springer, Berlin (1993)Google Scholar
  4. 4.
    Reiter, R.: A Logic for Default Reasoning. Artificial Intelligence 13, 81–132 (1980)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Kautz, H., Selman, B.: Hard Problems for Simple Default Logics. Artificial Intelligence 49, 243–279 (1991)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Stillman, J.: It’s Not My Default: The Complexity of Membership Problems in Restricted Propositional Default Logic. In: Proceedings AAAI 1990, pp. 571–579 (1990)Google Scholar
  7. 7.
    Gottlob, G.: Complexity Results for Nonmonotonic Logics. Journal of Logic and Computation 2, 397–425 (1992)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Stillman, J.: The Complexity of Propositional Default Logic. In: Proceedings AAAI 1992, pp. 794–799 (1992)Google Scholar
  9. 9.
    Gottlob, G., Leone, N., Veith, H.: Succinctness as a Source of Expression Complexity. Annals of Pure and Applied Logic 97, 231–260 (1999)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Baral, C., Subrahmanian, V.: Dualities Between Alternative Semantics for Logic Programming and Non-Monotonic Reasoning. Journal of Automated Reasoning 10, 399–420 (1993)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Winslett, M., Smith, K., Qian, X.: Formal Query Languages for Secure Relational Databases. ACM Transactions on Database Systems 19, 626–662 (1994)CrossRefGoogle Scholar
  12. 12.
    Bonatti, P., kRAVS, S., Subrahmanian, V.: Foundations of Secure Deductive Databases. IEEE Transactions on Knowledge and Data Engineering 7, 406–422 (1995)CrossRefGoogle Scholar
  13. 13.
    Cuppens, F., Demolombe, R.: A Modal Logical Framework for Security Policies. In: Raś, Z.W., Skowron, A. (eds.) ISMIS 1997. LNCS, vol. 1325, pp. 579–589. Springer, Heidelberg (1997)Google Scholar
  14. 14.
    Samarati, P., Sweeney, L.: Generalizing Data to Provide Anonymity when Disclosing Information. In: Proceedings ACM Symp. on Principles of Database Systems (1998)Google Scholar
  15. 15.
    Rizvi, S., Mendelzon, A.O., Sudarshan, S., Roy, P.: Extending query rewriting techniques for fine-grained access control. In: Weikum, G., König, A.C., Deßloch, S. (eds.) Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD 2004), pp. 551–562. ACM, New York (2004)CrossRefGoogle Scholar
  16. 16.
    LeFevre, K., Agrawal, R., Ercegovac, V., Ramakrishnan, R., Xu, Y., DeWitt, D.J.: Limiting disclosure in hippocratic databases. In: Nascimento, M.A., Özsu, M.T., Kossmann, D., Miller, R.J., Blakeley, J.A., Schiefer, K.B. (eds.) Proceedings of the Thirtieth International Conference on Very Large Data Bases (VLDB 2004), pp. 108–119. Morgan Kaufmann, San Francisco (2004)Google Scholar
  17. 17.
    Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.  9, 365–385 (1991)Google Scholar
  18. 18.
    Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV System for Knowledge Representation and Reasoning (2005) (To appear) Available via, http://www.arxiv.org/ps/cs.AI/0211004
  19. 19.
    Simons, P., Niemelä, I., Soininen, T.: Extending and Implementing the Stable Model Semantics. Artificial Intelligence 138, 181–234 (2002)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Lierler, Y., Maratea, M.: Cmodels-2: SAT-based Answer Set Solver Enhanced to Non-tight Programs. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 346–350. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Lin, F., Zhao, Y.: ASSAT: Computing Answer Sets of a Logic Program by SAT Solvers. In: Proceedings of the Eighteenth National Conference on Artificial Intelligence (AAAI-2002), Edmonton, Alberta, Canada. AAAI Press / MIT Press (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jürgen Dix
    • 1
  • Wolfgang Faber
    • 2
  • V. S. Subrahmanian
    • 3
  1. 1.Institut für InformatikTU ClausthalClausthalGermany
  2. 2.Department of MathematicsUniversity of CalabriaRende (CS)Italy
  3. 3.Department of Computer ScienceUniversity of MarylandCollege ParkUSA

Personalised recommendations