Treewidth in Verification: Local vs. Global

  • Andrea Ferrara
  • Guoqiang Pan
  • Moshe Y. Vardi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3835)


The treewidth of a graph measures how close the graph is to a tree. Many problems that are intractable for general graphs, are tractable when the graph has bounded treewidth. Recent works study the complexity of model checking for state transition systems of bounded treewidth. There is little reason to believe, however, that the treewidth of the state transition graphs of real systems, which we refer to as global treewidth, is bounded. In contrast, we consider in this paper concurrent transition systems, where communication between concurrent components is modeled explicitly. Assuming boundedness of the treewidth of the communication graph, which we refer to as local treewidth, is reasonable, since the topology of communication in concurrent systems is often constrained physically.

In this work we study the impact of local treewidth boundedness on the complexity of verification problems. We first present a positive result, proving that a CNF formula of bounded treewidth can be represented by an OBDD of polynomial size. We show, however, that the nice properties of treewidth-bounded CNF formulas are not preserved under existential quantification or unrolling. Finally, we show that the complexity of various verification problems is high even under the assumption of local treewidth boundedness. In summary, while global treewidth boundedness does have computational advantages, it is not a realistic assumption; in contrast, local treewidth boundedness is a realistic assumption, but its computational advantages are rather meager.


Model Check Transition System Transition Relation Tree Decomposition Communication Graph 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atserias, A., Kolaitis, P.G., Vardi, M.Y.: Constraint propagation as a proof system. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 77–91. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Beer, I., Ben-David, S., Geist, D., Gewirtzman, R., Yoeli, M.: Methodology and system for practical formal verification of reactive hardware. In: Proc. 6th Conf. on Computer Aided Verification, Stanford, June 1994, pp. 182–193 (1994)Google Scholar
  3. 3.
    Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking using SAT procedures instead of BDDs. In: DAC 1999, pp. 317–320 (1999)Google Scholar
  4. 4.
    Bjesse, P., Kukula, J.H., Damiano, R.F., Stanion, T., Zhu, Y.: Guiding sat diagnosis with tree decompositions. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 315–329. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernetica 11, 1–23 (1993)MATHMathSciNetGoogle Scholar
  6. 6.
    Bodlaender, H.L.: Treewidth: Algorithmic techniques and results. In: Privara, I., Ružička, P. (eds.) MFCS 1997. LNCS, vol. 1295. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  7. 7.
    Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Technical report, Universiteit Utrecht (1998)Google Scholar
  8. 8.
    Bryant, R.E.: Graph-based algorithms for boolean-function manipulation. IEEE Trans. on Computers C-35(8) (1986)Google Scholar
  9. 9.
    Bryant, R.E.: On the complexity of VLSI implementations and graph representations of Boolean functions with application to integer multiplication. IEEE Transaction on Computers 40(2), 205–213 (1991)CrossRefGoogle Scholar
  10. 10.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (2000)Google Scholar
  11. 11.
    Dechter, R., Pearl, J.: Network-based heuristics for constraint-satisfaction problems. Artificial Intelligence 34, 1–38 (1987)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173. Springer, Heidelberg (2000)Google Scholar
  13. 13.
    Emerson, E.A., Halpern, J.Y.: Sometimes and not never revisited: On the branching versus linear time. Journal of the ACM 33(1), 151–178 (1986)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Freuder, E.C.: Complexity of k-tree structured constraint satisfaction problems. In: Proc. AAAI 1990, pp. 4–9 (1990)Google Scholar
  15. 15.
    Gottlob, G., Pichler, R.: Hypergraphs in model checking: Acyclicity and hypertree-width versus clique-width. SIAM Journal on Computing 33(2), 351–378 (2004)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Harel, D., Kupferman, O., Vardi, M.Y.: On the complexity of verifying concurrent transition systems. Information and Computation 173(2), 143–161 (2002)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Huang, J., Darwiche, A.: Using DPLL for efficient OBDD construction. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 157–172. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Jurdziński, M.: Deciding the winner in partity games is in UP ∩ co-UP. Information Processing Letters 68, 119–124 (1998)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to branching-time model checking. Journal of ACM 47(2), 312–360 (2000)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Dordrecht (1993)MATHGoogle Scholar
  21. 21.
    Milner, R.: An algebraic definition of simulation between programs. In: Proc. 2nd Int. Joint Conf. on Artif. Int., pp. 481–489. British Computer Society (September 1971)Google Scholar
  22. 22.
    Obdržálek, J.: Fast mu-calculus model checking when tree-width is bounded. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 80–92. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  23. 23.
    Prasad, M.R., Chong, P., Keutzer, K.: Why is ATPG easy? In: Proc. of 36th ACM/IEEE conference on Design automation, pp. 22–28. ACM Press, New York (1999)CrossRefGoogle Scholar
  24. 24.
    Prior, A.N.: Past, Present, and Future. Clarendon Press, Oxford (1967)MATHGoogle Scholar
  25. 25.
    Robertson, N., Seymour, P.D.: Graph minors. i. excluding a forest. Journal of Combinatorial Theory Series B 35, 39–61 (1983)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Robertson, N., Seymour, P.D.: Graph minors. ii. algorithmic aspects of treewidth. Journal of Algorithms 7, 309–322 (1986)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Schiex, T.: A note on CSP graph parameters. Technical Report 1999/03, INRIA (1999)Google Scholar
  28. 28.
    Thilikos, D.M., Serna, M.J., Bodlaender, H.L.: A polynomial time algorithm for the cutwidth of bounded degree graphs with small treewidth. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 380–390. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  29. 29.
    Wang, D., Clarke, E.M., Zhu, Y., Kukula, J.: Using cutwidth to improve symbolic simulation and boolean satisfiability. In: IEEE International High Level Design Validation and Test Workshop (HLDVT 2001), p. 6 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Andrea Ferrara
    • 1
  • Guoqiang Pan
    • 2
  • Moshe Y. Vardi
    • 2
  1. 1.DIS – Università di Roma ”La Sapienza”RomaItaly
  2. 2.Dept. of CS, MS 132Rice UniversityHoustonUSA

Personalised recommendations