Deciding Separation Logic Formulae by SAT and Incremental Negative Cycle Elimination

  • Chao Wang
  • Franjo Ivančić
  • Malay Ganai
  • Aarti Gupta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3835)

Abstract

Separation logic is a subset of the quantifier-free first order logic. It has been successfully used in the automated verification of systems that have large (or unbounded) integer-valued state variables, such as pipelined processor designs and timed systems. In this paper, we present a fast decision procedure for separation logic, which combines Boolean satisfiability (SAT) with a graph based incremental negative cycle elimination algorithm. Our solver abstracts a separation logic formula into a Boolean formula by replacing each predicate with a Boolean variable. Transitivity constraints over predicates are detected from the constraint graph and added on a need-to basis. Our solver handles Boolean and theory conflicts uniformly at the Boolean level. The graph based algorithm supports not only incremental theory propagation, but also constant time theory backtracking without using a cumbersome history stack. Experimental results on a large set of benchmarks show that our new decision procedure is scalable, and outperforms existing techniques for this logic.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armando, A., Castellini, C., Giunchiglia, E., Idini, M., Maratea, M.: TSAT++: an open platform for satisfiability modulo theories. In: Workshop on Pragmatics of Decision Procedures in Automated Reasoning (2004)Google Scholar
  2. 2.
    Barrett, C., Dill, D.L., Levitt, J.: Validity checking for combinations of theories with equality. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  3. 3.
    Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T., Rossum, P., Schulz, S., Sebastiani, R.: An incremental and layered procedure for the satisfiability of linear arithmetic logic. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 317–333. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Bryant, R.E., Lahiri, S.K., Seshia, S.A.: Modeling and verifying systems using a logic of counter arithmetic with lambda expressions and uninterpreted functions. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p. 78. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. The MIT Press, Cambridge (1990)MATHGoogle Scholar
  6. 6.
    Cotton, S.: Satisfiability checking with difference constraints. Msc thesis, IMPRS Computer Science, Saarbrucken (2005)Google Scholar
  7. 7.
    Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Communications of the ACM 5, 394–397 (1962)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Filliâtre, J.-C., Owre, S., Rueß, H., Shankar, N.: ICS: Integrated canonizer and solver. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 246–249. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): Fast decision procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 175–188. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Goldberg, E., Novikov, Y.: BerkMin: A fast and robust SAT-solver. In: Design, Automation and Test in Europe (DATE 2003), March 2002, pp. 142–149 (2002)Google Scholar
  11. 11.
    Moskewicz, M., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: Proceedings of the Design Automation Conference, June 2001, pp. 530–535 (2001)Google Scholar
  12. 12.
    Nieuwenhuis, R., Oliveras, A.: DPLL(T) with exhaustive theory propagation and its application to difference logic. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 321–334. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Pnueli, A., Rodeh, Y., Shtrichman, O., Siegel, M.: The small model property: How small can it be? Information and Computation 178(1), 275–293 (2002)Google Scholar
  14. 14.
    Pratt, V.R.: Two easy theories whose combination is hard. Technical report, Massachusetts Institute of Technology (1977)Google Scholar
  15. 15.
    Ramalingam, G., Song, J., Joscovicz, L., Miller, R.E.: Solving difference constraints incrementally. Algorithmica 23(3), 261–275 (1999)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Seshia, S.A., Lahiri, S.K., Bryant, R.E.: A hybrid SAT-based decision procedure for separation logic with uninterpreted functions. In: Proceedings of the Design Automation Conference, June 2003, pp. 425–430 (2003)Google Scholar
  17. 17.
    Silva, J.P.M., Sakallah, K.A.: Grasp—a new search algorithm for satisfiability. In: International Conference on Computer-Aided Design, November 1996, pp. 220–227 (1996)Google Scholar
  18. 18.
    Strichman, O., Seshia, S.A., Bryant, R.E.: Deciding separation formulas with SAT. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 209–222. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Talupur, M., Sinha, N., Strichman, O., Pnueli, A.: Range allocation for separation logic. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 148–161. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Zhang, L., Malik, S.: Validating SAT solvers using an independent resolution-based checker: Practical implementations and other applications. In: Design, Automation and Test in Europe (DATE 2003), pp. 880–885 (March 2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Chao Wang
    • 1
  • Franjo Ivančić
    • 1
  • Malay Ganai
    • 1
  • Aarti Gupta
    • 1
  1. 1.NEC Laboratories AmericaPrincetonUSA

Personalised recommendations