On Confluence of Infinitary Combinatory Reduction Systems

  • Jeroen Ketema
  • Jakob Grue Simonsen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3835)


We prove that fully-extended, orthogonal infinitary combinatory reduction systems with finite right-hand sides are confluent modulo identification of hypercollapsing subterms. This provides the first general confluence result for infinitary higher-order rewriting.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hanus, M.: A unified computation model for functional and logic programming. In: Proc. of the 24th Annual SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 1997), pp. 80–93. ACM Press, New York (1997)CrossRefGoogle Scholar
  2. 2.
    Albert, E., Hanus, M., Huch, F., Oliver, J., Vidal, G.: An operational semantics for declarative multi-paradigm languages. In: Proc. of the 11th Int. Workshop on Functional and (Constraint) Logic Programming (WFLP 2002), Università degli Studi di Udine, pp. 7–20 (2002)Google Scholar
  3. 3.
    Fernández, A.J., Hortalá-Gonzales, T., Sáenz-Pérez, F.: Solving combinatorial problems with a constraint functional logic language. In: Dahl, V., Wadler, P. (eds.) PADL 2003. LNCS, vol. 2562, pp. 320–338. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Dershowitz, N., Kaplan, S., Plaisted, D.A.: Rewrite, rewrite, rewrite, rewrite, rewrite, .... Theoretical Computer Science 83, 71–96 (1991)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Kennaway, R., Klop, J.W., Sleep, R., de Vries, F.J.: Transfinite reductions in orthogonal term rewriting systems. Information and Computation 119, 18–38 (1995)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Terese: Term Rewriting Systems. Cambridge University Press, Cambridge (2003)Google Scholar
  7. 7.
    Kennaway, J.R., Klop, J.W., Sleep, M., de Vries, F.J.: Infinitary lambda calculus. Theoretical Computer Science 175, 93–125 (1997)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Marchiori, M.: Logic programs as term rewriting systems. In: Rodríguez-Artalejo, M., Levi, G. (eds.) ALP 1994. LNCS, vol. 850, pp. 223–241. Springer, Heidelberg (1994)Google Scholar
  9. 9.
    van Raamsdonk, F.: Translating logic programs into conditional rewriting systems. In: Proc. of the 14th Int. Conf. on Logic Programming (ICLP 1997), pp. 168–182. MIT Press, Cambridge (1997)Google Scholar
  10. 10.
    van Oostrom, V.: Normalisation in weakly orthogonal rewriting. In: Narendran, P., Rusinowitch, M. (eds.) RTA 1999. LNCS, vol. 1631, pp. 60–74. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Sekar, R.C., Ramakrishnan, I.V.: Programming in equational logic: beyond strong sequentiality. Information and Computation 104, 78–109 (1993)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Ketema, J., Simonsen, J.G.: Infinitary combinatory reduction systems. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 438–452. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Klop, J.W., van Oostrom, V., van Raamsdonk, F.: Combinatory reduction systems: introduction and survey. Theoretical Computer Science 121, 279–308 (1993)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Arnold, A., Nivat, M.: The metric space of infinite trees. Algebraic and topological properties. Fundamenta Informaticae 3, 445–476 (1980)MATHMathSciNetGoogle Scholar
  15. 15.
    Hanus, M., Prehofer, C.: Higher-order narrowing with definitional trees. In: Ganzinger, H. (ed.) RTA 1996. LNCS, vol. 1103, pp. 138–152. Springer, Heidelberg (1996)Google Scholar
  16. 16.
    van Oostrom, V.: Higher-order families. In: Ganzinger, H. (ed.) RTA 1996. LNCS, vol. 1103, pp. 392–407. Springer, Heidelberg (1996)Google Scholar
  17. 17.
    Klop, J.W.: Combinatory Reduction Systems. PhD thesis, Rijksuniversiteit Utrecht (1980)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jeroen Ketema
    • 1
  • Jakob Grue Simonsen
    • 2
  1. 1.Department of Computer ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
  2. 2.Department of Computer ScienceUniversity of Copenhagen (DIKU)Copenhagen ØDenmark

Personalised recommendations