Advertisement

Abstract

We distill Penrose’s argument against the “artificial intelligence premiss”, and analyze its logical alternatives. We then clarify the different positions one can take in answer to the question raised by the argument, skirting the issue of introspection per se.

Keywords

Turing Machine Wrong Answer Data Answer Interdisciplinary Journal Partial Predicate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avron, A.: Mishpete Gedel u-ve‘ayat ha-yesodot shel ha-matematikah (= Gödel’s Theorems and the Problem of the Foundations of Mathematics. Broadcast University, Ministry of Defence, Tel Aviv, Israel (1998) (In Hebrew)Google Scholar
  2. 2.
    Boker, U., Dershowitz, N.: Comparing computational power. Logic Journal of the IGPL (2006) (to appear) available at, http://www.cs.tau.ac.il/~nachum/papers/ComparingComputationalPower.pdf
  3. 3.
    Chalmers, D. (ed.): Symposium on Roger Penrose’s Shadows of the Mind. Association for the Scientific Study of Consciousness, vol. 2 (1995), Available at, http://psyche.cs.monash.edu.au/psyche-index-v2.html (viewed September 2005).
  4. 4.
    Chalmers, D.J.: Minds, machines, and mathematics: A review of Shadows of the Mind by Roger Penrose. Psyche: An Interdisciplinary Journal of Research on Consciousness, 2(9) (June 1995), Available at http://psyche.cs.monash.edu.au/v2/psyche-2-09-chalmers.html (viewed September 2005)
  5. 5.
    Davis, M.: Engines of Logic: Mathematicians and the Origin of the Computer. W. W. Norton & Company, New York (2001)Google Scholar
  6. 6.
    Dershowitz, N.: Orderings for term-rewriting systems. Theoretical Computer Science 17(3), 279–301 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Hofstadter, D.R.: Gödel, Escher, Bach: An Eternal Golden Braid. Basic Books (1979)Google Scholar
  8. 8.
    Kieu, T.D.: Quantum algorithm for Hilbert’s Tenth Problem. In: ArXiv Quantum Physics e-prints (October 2003) Available at, www.arXiv:quantph/0110136.com
  9. 9.
    Kieu, T.D.: Hypercomputability of quantum adiabatic processes: Fact versus prejudices. In: ArXiv Quantum Physics e-prints (April 2005), Available at, arXiv.org:quantph/0504101
  10. 10.
    LaForte, G., Hayes, P.J., Ford, K.M.: Why Gödel’s theorem cannot refute computationalism. Artificial Intelligence 104(1–2), 265–286 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Lucas, J.R.: Minds, machines and Gödel. Philosophy XXXVI, 112–127 (1961)CrossRefGoogle Scholar
  12. 12.
    McCarthy, J.: Awareness and understanding in computer programs: A review of Shadows of the Mind by Roger Penrose. Psyche: An Interdisciplinary Journal of Research on Consciousness, 2(11) (July 1995), Available at, http://psyche.cs.monash.edu.au/v2/psyche-2-11-mccarthy.html (viewed September 2005)
  13. 13.
    Newell, A., Simon, H.A.: Computer science as empirical enquiry. Communications of the ACM 19(3), 113–126 (1976)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Penrose, R.: The Emperor’s New Mind: Concerning Computers, Minds, and The Laws of Physics. Oxford University Press, New York (1989)Google Scholar
  15. 15.
    Penrose, R.: Shadows of the Mind: A Search for the Missing Science of Consciousness. Oxford University Press, Oxford (1994)Google Scholar
  16. 16.
    Putnam, H., Penrose, R.: Book review: Shadows of the Mind. Bulletin of the American Mathematical Society 32(3), 370–373 (1995), Available at, http://www.ams.org/bull/pre-1996-data/199507/199507015.pdf (viewed September 2005)CrossRefGoogle Scholar
  17. 17.
    Reingold, E.M., Shen, X.: More nearly optimal algorithms for unbounded searching, Part II: The transfinite case. SIAM J. Comput. 20(1), 184–208 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Searle, J.: Minds, brains and programs. Behavioral and Brain Sciences 3, 417–424 (1980) Available at, http://members.aol.com/NeoNoetics/MindsBrainsPrograms.html (September 2005)CrossRefGoogle Scholar
  19. 19.
    Smith, W.D.: Three counterexamples refuting Kieu’s plan for “quantum adiabatic hypercomputation”; and some uncomputable quantum mechanical tasks. Journal of Applied Mathematics and Computation (2006) (to appear)Google Scholar
  20. 20.
    Takeuti, G.: Ordinal diagrams. II. J. Math. Soc. Japan 12, 385–391 (1960)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Tsirelson, B.: The quantum algorithm of Kieu does not solve the Hilbert’s Tenth Problem (November 2001), Available at, arXiv.org/abs/quant-ph/0111009
  22. 22.
    Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, Ser. 2(42), 230–265 (1936) Correction in vol. 43, pp. 544-546 (1937), Available at, http://www.abelard.org/turpap2/tp2-ie.asp (viewed September 2005)Google Scholar
  23. 23.
    Turing, A.M.: Lecture to the London Mathematical Society on 20 February 1947. In: Carpenter, B.E., Doran, R.W. (eds.) A. M. Turing’s ACE Report of 1946 and Other Papers. Charles Babbage Institute Reprint Series for the History of Computing, vol. 10. MIT Press, Cambridge (1986)Google Scholar
  24. 24.
    Zeilberger, D.: A 2-minute proof of the 2nd most important theorem of the 2nd millennium (October 1998) Available at, http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/halt.html (viewed September 2005)

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Nachum Dershowitz
    • 1
  1. 1.School of Computer ScienceTel Aviv UniversityRamat AvivIsrael

Personalised recommendations