Entertainment Personalization Mechanism Through Cross-Domain User Modeling

  • Shlomo Berkovsky
  • Tsvi Kuflik
  • Francesco Ricci
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3814)


The growth of available entertainment information services, such as movies and CD listings, or travels and recreational activities, raises a need for personalization techniques for filtering and adapting contents to customer’s interest and needs. Personalization technologies rely on users data, represented as User Models (UMs). UMs built by specific services are usually not transferable due to commercial competition and models’ representation heterogeneity. This paper focuses on the second obstacle and discusses architecture for mediating UMs across different domains of entertainment. The mediation facilitates improving the accuracy of the UMs and upgrading the provided personalization.


Recommender System Collaborative Filter Target Service Information Filter Collaborative Filter Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aguzzoli, S., Avesani, P., Massa, P.: Collaborative Case-Based Recommender System. In: Craw, S., Preece, A.D. (eds.) ECCBR 2002. LNCS (LNAI), vol. 2416, p. 460. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Berkovsky, S.: Ubiquitous User Modeling in Recommender Systems. In: Proceedings of the UM Conference, Edinbirgh, UK (2005)Google Scholar
  3. 3.
    Berkovsky, S., Busetta, P., Eytani, Y., Kuflik, T., Ricci, F.: Collaborative Filtering over Distributed Environment. In: Proceedings of the Workshop on Decentralized, Agent-Based and Social Approaches to User Modeling, Edinburgh, UK (2005)Google Scholar
  4. 4.
    Cranor, L.F., Reagle, J., Ackerman, M.S.: Beyond Concern: Understanding Net Users’ Attitudes about Online Privacy, Technical report, AT&T Labs-Research (1999)Google Scholar
  5. 5.
    Dai, W., Cohen, R.: Dynamic Personalized TV Recommendation System. In: Proceedings of the Workshop on Personalization in Future TV, Pittsburgh, PA (2003)Google Scholar
  6. 6.
    Good, N., Schafer, J.B., Konstan, J.A., Borchers, A., Sarwar, B., Herlocker, J., Riedl, J.: Combining Collaborative Filtering with Personal Agents for Better Recommendations. In: Proceedings of the AAAI Conference, Orlando, FL (1999)Google Scholar
  7. 7.
    Goldberg, K., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: A Constant Time Collaborative Filtering Algorithm. Information Retrieval Journal 4(2), 133–151 (2001)zbMATHCrossRefGoogle Scholar
  8. 8.
    Hanani, U., Shapira, B., Shoval, P.: Information Filtering: Overview of Issues, Research and Systems. User Modeling and User Adapted Interactions 11(3), 203–259 (2001)zbMATHCrossRefGoogle Scholar
  9. 9.
    Kay, J., Kummerfeld, B., Lauder, P.: Managing Private User Models and Shared Personas. In: Proceedings of the Workshop on UM for Ubiquitous Computing, Pittsburgh, PA (2003)Google Scholar
  10. 10.
    Kobsa, A.: Generic User Modeling Systems. User Modeling and User-Adapted Interaction 11(1-2), 49–63 (2001)zbMATHCrossRefGoogle Scholar
  11. 11.
    Niederee, C., Stewart, A., Mehta, B., Hemmje, M.: A Multi-Dimensional, Unified User Model for Cross-System Personalization. In: Proceedings of the Workshop on Environments for Personalized Information Access, Gallipoli, Italy (2004)Google Scholar
  12. 12.
    Resnick, P., Varian, H.R.: Recommender Systems. Communications of the ACM 40(3), 56–58 (1997)CrossRefGoogle Scholar
  13. 13.
    Ricci, F., Arslan, B., Mirzadeh, N., Venturini, A.: ITR: a Case-Based Travel Advisory System. In: Craw, S., Preece, A.D. (eds.) ECCBR 2002. LNCS (LNAI), vol. 2416, p. 613. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Smyth, B., Cotter, P.: The Sky’s the Limit: A Personalised TV Listings Service for the Digital TV Age. In: Proceedings of the ES Conference, Cambridge, UK (1999)Google Scholar
  15. 15.
    Stock, O., Zancanaro, M., Not, E.: Intelligent Interactive Information Presentation for Cultural Tourism. In: Stock, O., Zancanaro, M. (eds.) Multimodal Intelligent Information Presentation. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Shlomo Berkovsky
    • 1
  • Tsvi Kuflik
    • 2
  • Francesco Ricci
    • 3
  1. 1.Computer Science DepartmentUniversity of Haifa 
  2. 2.Management Information Systems DepartmentUniversity of Haifa 
  3. 3.ITC-irstTrento

Personalised recommendations