Neuronal Clustering of Brain fMRI Images

  • Nicolas Lachiche
  • Jean Hommet
  • Jerzy Korczak
  • Agnès Braud
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3776)

Abstract

Functional Magnetic Resonance Imaging (fMRI) allows the neuroscientists to observe the human brain in vivo. The current approach consists in statistically validating their hypotheses. Data mining techniques provide an opportunity to help them in making up their hypotheses. This paper shows how a neuronal clustering technique can highlight active areas thanks to an appropriate distance between fMRI image sequences. This approach has been integrated into an interactive environment for knowledge discovery in brain fMRI. Its results on a typical dataset validate the approach and open further developments in this direction.

References

  1. 1.
    Beckmann, C., Smith, S.M.: Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans. on Medical Imaging (2003)Google Scholar
  2. 2.
    Cox, R.W.: AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research 29, 162–173 (1996)CrossRefGoogle Scholar
  3. 3.
    Faisan, S., Thoraval, L., Armspach, J.-P., Heitz, F.: Unsupervised learning and mapping of brain fmri signals based on hidden semi–markov event sequence models. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 75–82. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Foucher, J.R., Otzenberger, H., Gounot, D.: Where arousal meets attention: a simultaneous fmri and eeg recording study. Neuroimage 22(2), 688–697 (2004)CrossRefGoogle Scholar
  5. 5.
    Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.P., Frith, C.D., Frackowiak, R.S.J.: Statistical parametric maps in functional imaging: A general linear approach. Human Brain Mapping 2, 189–210 (1995)CrossRefGoogle Scholar
  6. 6.
    Fritzke, B.: A growing neural gas network learns topologies. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) Advances in Neural Information Processing Systems, vol. 7, pp. 625–632. MIT Press, Cambridge (1995)Google Scholar
  7. 7.
    Goebel, R.: BrainVoyager: Ein Programm zur Analyse und Visualisierung von Magnetresonanztomographiedaten. In: Plesser, T., Wittenburg, P. (eds.) Forschung und wissenschaftliches Rechnen (1997)Google Scholar
  8. 8.
    Kohonen, T.: Self-organized formation of topologically correct feature maps. Biological Cybernetics 43, 59–69 (1982)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Sommer, F.T., Wichert, A.: Exploratory Analysis and Data Modeling in Functional Neuroimaging. Massachusetts Institute of Technology, Massachusetts, The MIT Press, Cambridge (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Nicolas Lachiche
    • 1
  • Jean Hommet
    • 1
  • Jerzy Korczak
    • 1
  • Agnès Braud
    • 1
  1. 1.LSIIT, Pôle APIIllkirchFrance

Personalised recommendations