We study the class of timed automata called eventual timed automata (ETA’s) obtained using guards based on the operator \(\Diamond\). In this paper we show that ETA’s form a decidable class of timed automata via a flattening to non-recursive ETA’s followed by a reduction to 1-clock alternating timed automata. We also study the expressiveness of the class of ETA’s and show that they compare favourably with other classes in the literature. Finally we show that class obtained using the dual operator \(\Diamond\!\!\!\!\!-\) is also decidable, though the two operators together lead to an undecidable class of languages.


Temporal Logic Decision Procedure Transition Relation Dual Operator Canonical Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AD94]
    Alur, R., Dill, D.: A theory of timed automata. In: Theoretical Computer Science, vol. 126, pp. 183–235. Elsevier, Amsterdam (1994)Google Scholar
  2. [AFH96]
    Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM 43, 116–146 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  3. [AFH94]
    Alur, R., Fix, L., Henzinger, T.A.: Event-clock automata: a determinizable class of timed automata. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 1–13. Springer, Heidelberg (1994)Google Scholar
  4. [DM05]
    D’Souza, D.: Raj Mohan M: Eventual Timed Automata, IISc-CSA-TR- 2005-8, Technical Report, Indian Institute of Science, Bangalore (2005)Google Scholar
  5. [DP05]
    D’Souza, D., Prabhakar, P.: On the expressiveness of MTL in the pointwise and continuous semantics, IISc-CSA-TR-2005-7, Technical Report, Indian Institute of Science, Bangalore (2005)Google Scholar
  6. [DT04]
    D’Souza, D., Tabareau, N.: On timed automata with input-determined guards. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253, pp. 68–83. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. [HRS98]
    Henzinger, T., Raskin, J., Schobbens, P.: The regular real-time languages. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 580–591. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. [Koy90]
    Koymans, R.: Specifying real-time properties with metric temporal logic. Real Time Systems 2(4), 255–299 (1990)CrossRefGoogle Scholar
  9. [LW05]
    Lasota, S., Walukiewicz, I.: Alternating timed automata. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 250–265. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. [OW05]
    Ouaknine, J., Worrel, J.: On the decidability of metric temporal logic. In: Proc. LICS 2005 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Deepak D’Souza
    • 1
  • M. Raj Mohan
    • 1
  1. 1.Department of Computer Science and AutomationIndian Institute of ScienceBangaloreIndia

Personalised recommendations