How to Do Philosophy Informationally

  • Gian Maria Greco
  • Gianluca Paronitti
  • Matteo Turilli
  • Luciano Floridi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3782)

Abstract

In this paper we introduce three methods to approach philosophical problems informationally: Minimalism, the Method of Abstraction and Constructionism. Minimalism considers the specifications of the starting problems and systems that are tractable for a philosophical analysis. The Method of Abstraction describes the process of making explicit the level of abstraction at which a system is observed and investigated. Constructionism provides a series of principles that the investigation of the problem must fulfil once it has been fully characterised by the previous two methods. For each method, we also provide an application: the problem of visual perception, functionalism, and the Turing Test, respectively.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bechtel, W., Mundale, J.: Multiple realizability revisited: Linking cognitive and neural states. Philosophy of Science 66, 175–207 (1999)CrossRefGoogle Scholar
  2. 2.
    Brooks, R.A.: Intelligence without representation. Artificial Intelligence 47(1-3), 139–159 (1991)CrossRefGoogle Scholar
  3. 3.
    Chalmers, D.J.: The Conscious Mind: in Search of a Fundamental Theory. Oxford University Press, Oxford (1996)MATHGoogle Scholar
  4. 4.
    Child, A.: Making and knowing in hobbes, vico, and dewey. University of California Publications in Philosophy 16(13), 271–310 (1953)Google Scholar
  5. 5.
    Cordeschi, R.: The Discovery of the Artificial: Behavior, Mind, and Machines Before and Beyond Cybernetics. Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  6. 6.
    Floridi, L.: What is the philosophy of information? Metaphilosophy 33(1-2), 123–145 (2002)CrossRefGoogle Scholar
  7. 7.
    Floridi, L.: On the logical unsolvability of the gettier problem. Synthese 142(1), 61–79 (2004)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Floridi, L.: Open problems in the philosophy of information. Metaphilosophy 35(4), 554–582 (2004)CrossRefGoogle Scholar
  9. 9.
    Floridi, L., Sanders, J.W.: The method of abstraction. In: Negrotti, M. (ed.) Yearbook of the Artificial. Nature, Culture and Technology. Models in contemporary sciences, vol. 2, pp. 177–220. P. Lang, Bern (2004)Google Scholar
  10. 10.
    Gibson, J.J.: The Ecological Approach to Visual Perception. Houghton Mifflin, Boston (1979)Google Scholar
  11. 11.
    Greco, G.M., Paronitti, G., Turilli, M., Floridi, L.: The philosophy of information - a methodological point of view. In: Althoff, K.D., Dengel, A., Bergmann, R., Nick, M., Roth-Berghofer, T. (eds.) WM 2005: Professional Knowledge Management. Experiences and Visions, pp. 563–570. DFKI GmbH, Kaiserslautern (2005)Google Scholar
  12. 12.
    Grim, P.: Computational modeling as a philosophical methodology. In: Floridi, L. (ed.) The Blackwell Guide to the Philosophy of Computing and Information, pp. 337–349. Blackwell, Oxford (2003)Google Scholar
  13. 13.
    Adams, M.M.: William Ockham. University of Notre Dame Press, Notre Dame (1987)Google Scholar
  14. 14.
    Newell, A., Simon, H.A.: Computer science as empirical enquiry: Symbols and search. Communications of the ACM 19(3), 113–126 (1976)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Noé, A., Thompson, E. (eds.): Vision and Mind: Selected Readings in the Philosophy of Perception. MIT Press, Cambridge (2002)Google Scholar
  16. 16.
    Pérez-Ramos, A.: Francis Bacon’s Idea of Science and the Maker’s Knowledge Tradition. Oxford University Press, Oxford (1988)Google Scholar
  17. 17.
    Putnam, H.: Psychological predicates. In: Captain, W.H., Merrill, D.D. (eds.) Art, Mind and Religion. Pittsburgh University Press, Pittsburgh (1967)Google Scholar
  18. 18.
    Quine, W.V.O.: Two dogmas of empiricism. The Philosophical Review 60(1), 20–43 (1951)CrossRefGoogle Scholar
  19. 19.
    Raftopoulos, A.: Cartesian analysis and synthesis. Studies in History and Philosophy of Science, Part A 34(2), 265–308 (2003)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Rasmussen, S., Barrett, C.L.: Elements of a theory of simulation. In: Moràn, F., Moreno, J.J., Merelo, P., Chacòn, P. (eds.) ECAL 1995. Advances in Artificial Life: Proceedings of the Third European Conference on Artificial Life, pp. 515–529. Springer, Berlin (1995)Google Scholar
  21. 21.
    de Roever, W.P., Engelhardt, K.: Data Refinement: Model-oriented Proof Methods and their Comparison. Cambridge tracts in theoretical computer science. Cambridge University Press, Cambridge (1998)MATHCrossRefGoogle Scholar
  22. 22.
    Turing, A.M.: Computing machinery and intelligence. Mind 49(236), 433–460 (1950)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Zeigler, B.P.: Theory of Modelling and Simulation. Wiley, New York (1976)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Gian Maria Greco
    • 1
  • Gianluca Paronitti
    • 1
  • Matteo Turilli
    • 1
  • Luciano Floridi
    • 1
  1. 1.Information Ethics GroupOxford University Computing LaboratoryOxfordUnited Kingdom

Personalised recommendations