Structure-Based Algorithms for Computing Preferred Arguments of Defeasible Knowledge Bases

  • Quoc Bao Vo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3809)

Abstract

In this paper we present several efficient computational procedures for defeasible reasoning while the plausible and well-defined semantics, viz.preferred models and stable models, are not given up. The proposed algorithms exploit the structural information of defeasible knowledge bases to facilitate efficient computational models.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract, argumentation-theoretic approach to default reasoning. Artificial Intelligence Journal 93, 63–101 (1997)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Communications of the ACM 5, 394–397 (1962)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7(3), 201–215 (1960)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Elkan, C.: A rational reconstruction of nonmonotonic truth maintenance systems. Artificial Intelligence Journal 43(2), 219–234 (1990)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic programs. Journal of the ACM 38(3), 620–650 (1991)MATHGoogle Scholar
  6. 6.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of the Fifth International Conference and Symposium on Logic Programming, pp. 1070–1080 (1988)Google Scholar
  7. 7.
    Kautz, H.A., Selman, B.: Hard problems for simple default logics. Artificial Intelligence Journal 49(1-3), 243–279 (1991)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Lifschitz, V.: Answer set programming and plan generation. AIJ 138(1-2), 39–54 (2002)MATHMathSciNetGoogle Scholar
  9. 9.
    Marek, W., Truszczynski, M.: Autoepistemic logic. Journal of the ACM 38(3), 588–619 (1991)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    McDermott, D.V., Doyle, J.: Non-monotonic logic I. Artificial Intelligence Journal 13(1-2), 41–72 (1980)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Moore, R.C.: Semantical considerations on nonmonotonic logic. Artificial Intelligence Journal 25(1), 75–94 (1985)MATHCrossRefGoogle Scholar
  12. 12.
    Pollock, J.: Cognitive Carpentry: A Blueprint for How to Build a Person. MIT Press, London (1995)Google Scholar
  13. 13.
    Przymusinski, T.C.: Perfect model semantics. In: The Fifth International Conference and Symposium on Logic Programming, Seattle, Washington (1988)Google Scholar
  14. 14.
    Reiter, R.: A logic for default reasoning. Artificial Intelligence Journal 13, 81–132 (1980)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Quoc Bao Vo
    • 1
  1. 1.School of Computer Science and Information TechnologyRMIT UniversityMelbourneAustralia

Personalised recommendations