Fuzzy Attribute Implications: Computing Non-redundant Bases Using Maximal Independent Sets

  • Radim Bělohlávek
  • Vilém Vychodil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3809)


This note describes a method for computation of non-redundant bases of attribute implications from data tables with fuzzy attributes. Attribute implications are formulas describing particular dependencies of attributes in data. A non-redundant basis is a minimal set of attribute implications such that each attribute implication which is true in a given data (semantically) follows from the basis. Our bases are uniquely given by so-called systems of pseudo-intents. We reduce the problem of computing systems of pseudo-intents to the problem of computing maximal independent sets in certain graphs. We outline theoretical foundations, the algorithm, and present demonstrating examples.


Fuzzy Logic Data Table Concept Lattice Formal Concept Analysis Galois Connection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bělohlávek, R.: Similarity relations in concept lattices. J. Logic Comput. 10(6), 823–845 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bělohlávek, R.: Fuzzy Relational Systems: Foundations and Principles. Kluwer Academic/Plenum Publishers, New York (2002)zbMATHGoogle Scholar
  3. 3.
    Bělohlávek, R.: Concept lattices and order in fuzzy logic. Ann. Pure Appl. Logic 128, 277–298 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bělohlávek, R., Chlupová, M., Vychodil, V.: Implications from data with fuzzy attributes. In: AISTA 2004 in Cooperation with the IEEE Computer Society Proceedings, 5 pages (2004) ISBN 2–9599776–8–8Google Scholar
  5. 5.
    Bělohlávek, R., Vychodil, V.: Implications from data with fuzzy attributes vs. scaled binary attributes. In: FUZZ-IEEE 2005, The IEEE International Conference on Fuzzy Systems, pp. 1050–1055 (2005) ISBN 0–7803–9158–6Google Scholar
  6. 6.
    Bělohlávek, R., Vychodil, V.: Reducing attribute implications from data tables with fuzzy attributes to tables with binary attributes. In: Proceedings of the 8th Joint Conference on Information Sciences, pp. 78–81 (2005) ISBN 0–9707890–3–3Google Scholar
  7. 7.
    Bělohlávek, R., Vychodil, V.: Fuzzy attribute logic: attribute implications, their validity, entailment, and non-redundant basis. In: Liu, Y., Chen, G., Ying, M. (eds.) Fuzzy Logic, Soft Computing & Computational Intelligence: Eleventh International Fuzzy Systems Association World Congress, vol. I, pp. 622–627. Tsinghua University Press and Springer (2005) ISBN 7–302–11377–7Google Scholar
  8. 8.
    Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer, Berlin (1999)zbMATHGoogle Scholar
  9. 9.
    Gerla, G.: Fuzzy Logic. Mathematical Tools for Approximate Reasoning. Kluwer, Dordrecht (2001)zbMATHGoogle Scholar
  10. 10.
    Guigues, J.-L., Duquenne, V.: Familles minimales d’implications informatives resultant d’un tableau de données binaires. Math. Sci. Humaines 95, 5–18 (1986)MathSciNetGoogle Scholar
  11. 11.
    Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)zbMATHGoogle Scholar
  12. 12.
    Hájek, P.: On very true. Fuzzy Sets and Systems 124, 329–333 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic. Theory and Applications. Prentice-Hall, Englewood Cliffs (1995)zbMATHGoogle Scholar
  14. 14.
    Takeuti, G., Titani, S.: Globalization of intuitionistic set theory. Annals of Pure and Applied Logic 33, 195–211 (1987)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Radim Bělohlávek
    • 1
  • Vilém Vychodil
    • 1
  1. 1.Department of Computer SciencePalacký University, OlomoucOlomoucCzech Republic

Personalised recommendations