An Interstage Change Model for Sandbox Geography

  • Florian A. Twaroch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3799)


Formal models for incremental ontologies are needed in geographic information systems. While there are methods to describe ontologies for a certain purpose, it is still an open question, how to link different geographic ontologies. Observing children in a sandbox can motivate a new way of designing dynamic spatio-temporal ontologies. Contemporary developmental psychology provides evidence that knowledge about the world is acquired in piecemeal fashion. Infants form theory like concepts of the world that are revised in the light of new evidence [12]. We take these findings to build multi tiered ontologies grounded in children’s spatial experience. Questions of how to structure and connect the ontologies will be addressed. The formalization of spatial concepts are investigated in an agent based approach using an algebraic framework.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baillargeon, R.: Infants’ reasoning about hidden objects: evidence for event-general and event-specific expectations. Developmental Science 7(4), 391–424 (2004)CrossRefGoogle Scholar
  2. 2.
    Bower, T.G.R.: The Rational Infant - Learning In Infancy. W. H. Freeman and Company, New York (1989)Google Scholar
  3. 3.
    Carey, S.: Bootstrap knowledge, Deadalus, Winter, pp. 59–68 (2004)Google Scholar
  4. 4.
    Casati, R.: The structure of shadows. In: Time and Motion of Socio-Economic Units, pp. 99–109. Taylor and Francis, Abington (2000)Google Scholar
  5. 5.
    Couclelis, H., Gale, N.: Space and Spaces. Geografiska Annaler 68B(1), 1–12 (1986)Google Scholar
  6. 6.
    Egenhofer, M.J., Mark, D.M.: Naive Geography. In: Frank, A.U., Kuhn, W. (eds.) COSIT 1995. LNCS, vol. 988, pp. 1–15. Springer, Heidelberg (1995)Google Scholar
  7. 7.
    Egenhofer, M.J., Rodriguez, A.M.: Relation Algebras over Containers and Surfaces: An Ontological Study of a Room Space. Journal of Spatial Cognition and Computation 1(2), 155–180 (1999)CrossRefGoogle Scholar
  8. 8.
    Frank, A.U.: Specifications for interoperability: formalizing spatial relations ’in’, ’auf’ and ’an’ and the corresponding image schemata ’container’, ’surface’ and ’link’. Internal report, Dept. of Geoinformation, Technical University Vienna (1998)Google Scholar
  9. 9.
    Frank, A.U.: One Step Up the Abstraction Ladder: Combining Algebras - From Functional Pieces to a Whole. In: Freksa, C., Mark, D.M. (eds.) COSIT 1999, vol. 1661, pp. 95–107. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Frank, A.U.: Tiers of ontology and consistency constraints in geographic information systems. International Journal of Geographical Information Science 5(7 (Special Issue on Ontology of Geographic Information)), 667–678 (2001)CrossRefGoogle Scholar
  11. 11.
    Freundschuh, S.M., Egenhofer, M.J.: Human Conceptions of Spaces: Implications for Geographic Information Systems. Transactions in GIS 2(4), 361–375 (1997)Google Scholar
  12. 12.
    Gopnik, A., Meltzoff, A.N.: Words, thoughts, and theories. In: Learning, Development, and Conceptual Change. MIT Press, Cambridge (1997)Google Scholar
  13. 13.
    Hart, R.A., Moore, G.T.: The development of spatial cognition of large scale environments: a review. Technical report, Clark University (1973)Google Scholar
  14. 14.
    Hiraki, K., Sashima, A., Phillips, S.: From Egocentric to Allocentric Spatial Behavior: A Computational Model of Spatial Development. Adaptive Behaviour 6(3/4), 371–391 (1998)CrossRefGoogle Scholar
  15. 15.
    Kuhn, T.S.: Die Struktur wissenschaftlicher Revolutionen. suhrkamp taschenbuch wissenschaft, Frankfurt (1976)Google Scholar
  16. 16.
    Kuipers, B.: Modeling spatial knowledge. Cognitive Science 2(2), 129–153 (1978)CrossRefGoogle Scholar
  17. 17.
    Loeckx, J., Ehrich, H.-D., Markus, W.: Specification of abstract data types. John Wiley and B.G. Teubner, Chichester (1996)zbMATHGoogle Scholar
  18. 18.
    Luger, G.F., Wishart, J.G., Bower, T.G.R.: Modelling the stages of the identity theory of object-concept development in infancy. Perception 13, 97–115 (1984)CrossRefGoogle Scholar
  19. 19.
    Luo, Y., Baillargeon, R.: When the ordinary seems unexpected: evidence for rule-based physical reasoning in young infants. Cognition 95(3), 297–328 (2005)CrossRefGoogle Scholar
  20. 20.
    Lynch, K.: The image of the city. MIT Press, Cambridge (1960)Google Scholar
  21. 21.
    Mark, D., Freksa, C., Hirtle, S., Lloyd, R., Tversky, B.: Cognitive models of geographical space. IJGIS 13(8), 747–774 (1999)CrossRefGoogle Scholar
  22. 22.
    Montello, D.R.: Scale and multiple psychologies of space. In: Cosit, pp. 312–321 (1993)Google Scholar
  23. 23.
    Newcombe, N.S., Huttenlocher, J.: Making space: the development of spatial representation and reasoning. In: Learning, Development, and Conceptual Change. MIT Press, Cambridge (2003)Google Scholar
  24. 24.
    Piaget, J.P., Inhelder, B.: Die Entwicklung des räumlichen Denkens beim Kinde, 3rd edn., vol. 6. Klett-Cotta, Stuttgart (1999) (translated by Heipcke, R.)Google Scholar
  25. 25.
    Siegel, A.W., White, S.H.: The Development of Spatial Representations of Large-Scale Environments. In: Advances in Child Development and Behavior, vol. 10, ch. 2, pp. 9–55. Academic Press, London (1975)Google Scholar
  26. 26.
    Spelke, E.S.: Principles of object perception. Cognitive Science 14, 29–56 (1990)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Florian A. Twaroch
    • 1
  1. 1.Institute for Geoinformation and CartographyTechnical University ViennaViennaAustria

Personalised recommendations