Advertisement

Energy Minimization Based Segmentation and Denoising Using a Multilayer Level Set Approach

  • Ginmo Chung
  • Luminita A. Vese
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3757)

Abstract

This paper is devoted to piecewise-constant segmentation of images using a curve evolution approach in a variational formulation. The problem to be solved is also called the minimal partition problem, as formulated by Mumford and Shah [20]. The proposed new models are extensions of the techniques previously introduced in [9], [10], [27]. We represent here the set of boundaries of the segmentation implicitly, by a multilayer of level-lines of a continuous function. In the standard approach of front propagation, only one level line is used to represent the boundary. The multilayer idea is inspired from previous work on island dynamics for epitaxial growth [14], [4]. Using a multilayer level set approach, the computational cost is smaller and in some applications, a nested structure of the level lines can be useful.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambrosio, L., Tortorelli, V.M.: Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Comm. Pure Appl. Math. 43, 999–1036 (1990)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Ambrosio, L., Tortorelli, V.M.: On the Approximation of Free Discontinuity Problems. Bollettino U.M.I. 6-B(7), 105–123 (1992)Google Scholar
  3. 3.
    Aronsson, G.: Minimization problems for functionals supx F(x,f(x),f′(x)). Arkiv for mathematik 6(1), 33 (1965)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Caflisch, R.E., Gyure, M.F., Merriman, B., Osher, S.J., Ratsch, C., Vvedensky, D.D., Zinck, J.J.: Island dynamics and the level set method for epitaxial growth. Applied Mathematics Letters 12(4), 13–22 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Caselles, V., Catté, F., Coll, T., Dibos, F.: A geometric model for active contours in image-processing. Numerische Mathematik 66(1), 1–31 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. IJCV 22(1), 61–79 (1997)zbMATHCrossRefGoogle Scholar
  7. 7.
    Caselles, V., Morel, J.M., Sbert, C.: An axiomatic approach to image interpolation. IEEE Transactions on IP 7(3), 376–386 (1998)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Chan, T.F., Sandberg, B.Y., Vese, L.A.: Active contours without edges for vector-valued images. JVCIR 11(2), 130–141 (2000)Google Scholar
  9. 9.
    Chan, T.F., Vese, L.: An active contour model without edges. In: Nielsen, M., Johansen, P., Fogh Olsen, O., Weickert, J. (eds.) Scale-Space 1999. LNCS, vol. 1682, pp. 141–151. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Transactions on IP 10(2), 266–277 (2001)zbMATHGoogle Scholar
  11. 11.
    Chan, T.F., Vese, L.A.: Level Set Algorithm for Minimizing the Mumford-Shah Functional in Image Processing. In: IEEE Workshop on VLSM, pp. 161–168 (2001)Google Scholar
  12. 12.
    Cohen, L.D.: Avoiding local minima for deformable curves in image analysis. In: Le Méhauté, A., Rabut, C., Schumaker, L.L. (eds.) Curves and Surfaces with Applications in CAGD, pp. 77–84 (1997)Google Scholar
  13. 13.
    Cohen, L., Bardinet, E., Ayache, N.: Surface reconstruction using active contour models. In: Proc. SPIE 1993 Conference on Geometric Methods in Computer Vision, San Diego, CA (July 1993)Google Scholar
  14. 14.
    Gyure, M.F., Ratsch, C., Merriman, B., Caflisch, R.E., Osher, S., Zinck, J.J., Vvedensky, D.D.: Level-set methods for the simulation of epitaxial phenomena. Physical Review E 58(6), R6927–R6930, Part A (1998)Google Scholar
  15. 15.
    Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., Yezzi Jr., A.: Conformal curvature flows: from phase transitions to active vision. Arch. Rational Mech. Anal. 134(3), 275–301 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Koepfler, G., Lopez, C., Morel, J.-M.: A multiscale algorithm for image segmentation by variational method. SIAM J. Num. Analysis 31(1), 282–299 (1994)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Lie, J., Lysaker, M., Tai, X.-C.: Piecewise Constant Level Set Methods and Image Segmentation. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 573–584. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation - a level set approach. IEEE Tr. PAMI 17(2), 158–175 (1995)Google Scholar
  19. 19.
    Morel, J.M., Solimini, S.: Density estimates for the boundaries of optimal segmentations. CRASS I-Mathématique 312(6), 429–432 (1991)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42, 577–685 (1989)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Paragios, N., Deriche, R.: Unifying boundary and region-based information for geodesic active tracking. In: Proc. CVPR 1999, vol. 2, pp. 23–25 (1999)Google Scholar
  22. 22.
    Paragios, N., Deriche, R.: Geodesic active regions: A new framework to deal with frame partition problems in computer vision. JVCIR 13(1-2), 249–268 (2002)Google Scholar
  23. 23.
    Paragios, N., Deriche, R.: Geodesic active regions and level set methods for supervised texture segmentation. IJCV 46(3), 223–247 (2002)zbMATHCrossRefGoogle Scholar
  24. 24.
    Samson, C., Blanc-Féraud, L., Aubert, G., Zérubia, J.: A level set model for image classification. In: Nielsen, M., Johansen, P., Fogh Olsen, O., Weickert, J. (eds.) Scale-Space 1999. LNCS, vol. 1682, pp. 306–317. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  25. 25.
    Samson, C., Blanc-Féraud, L., Aubert, G., Zérubia, J.: A level set model for image classification. IJCV 40(3), 187–197 (2000)zbMATHCrossRefGoogle Scholar
  26. 26.
    Tsai, A., Yezzi, A., Willsky, A.S.: Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Transactions on IP 10(8), 1169–1186 (2001)zbMATHGoogle Scholar
  27. 27.
    Vese, L.A., Chan, T.F.: A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. IJCV 50(3), 271–293 (2002)zbMATHCrossRefGoogle Scholar
  28. 28.
    Vese, L.: Multiphase Object Detection and Image Segmentation. In: Osher, S., Paragios, N. (eds.) Geometric Level Set Methods in Imaging, Vision and Graphics, pp. 175–194. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  29. 29.
    Zhao, H.-K., Chan, T., Merriman, B., Osher, S.: Variational level set approach to multiphase motion. JCP 127(1), 179–195 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Zhu, S.C., Yuille, A.: Region competition: Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Transactions on PAMI 18(9), 884–900 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ginmo Chung
    • 1
  • Luminita A. Vese
    • 1
  1. 1.Department of MathematicsUniversity of California, Los AngelesLos AngelesUSA

Personalised recommendations