A Computational Approach to Fisher Information Geometry with Applications to Image Analysis

  • Washington Mio
  • Dennis Badlyans
  • Xiuwen Liu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3757)


We develop a computational approach to non-parametric Fisher information geometry and algorithms to calculate geodesic paths in this geometry. Geodesics are used to quantify divergence of probability density functions and to develop tools of data analysis in information manifolds. The methodology developed is applied to several image analysis problems using a representation of textures based on the statistics of multiple spectral components. Histograms of filter responses are viewed as elements of a non-parametric statistical manifold, and local texture patterns are compared using information geometry. Appearance-based object recognition experiments, as well as region-based image segmentation experiments are carried out to test both the representation and metric. The proposed representation of textures is also applied to the development of a spectral cartoon model of images.


Spectral Component Fisher Information Independent Component Analysis Geodesic Distance Fisher Information Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amari, S.: Differential-geometrical methods of statistics. Lecture Notes in Statistics, vol. 28. Springer, Berlin (1985)Google Scholar
  2. 2.
    Amari, S., Nagaoka, H.: Methods of information geometry. AMS and Oxford University Press, New York (2000)zbMATHGoogle Scholar
  3. 3.
    Blake, A., Zisserman, A.: Visual reconstruction. MIT Press, Cambridge (1987)Google Scholar
  4. 4.
    Chan, T., Shen, J., Vese, L.: Variational PDE models in image processing. Notices Amer. Math. Soc. 50, 14–26 (2003)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Dawid, A.P.: Discussion of defining a curvature of a statistical problem (with applications to second-order efficiency) by B. Efron. The Annals of Statistics 3, 1231–1234 (1975)MathSciNetGoogle Scholar
  6. 6.
    Donoho, D.L., Flesia, A.G.: Can recent innovations in harmonic analysis ‘explain’ key findings in natural image statistics? Network: Computation in Neural Systems 12(3), 371–393 (2001)zbMATHGoogle Scholar
  7. 7.
    Dryden, I.L., Mardia, K.V.: Statistical shape analysis. John Wiley & Son, Chichester (1998)zbMATHGoogle Scholar
  8. 8.
    Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6(6), 721–741 (1984)zbMATHCrossRefGoogle Scholar
  9. 9.
    Hoffmann, T., Buhmann, J.M.: Pairwise data clustering by deterministic annealing. IEEE Trans. on Pattern Analysis and Machine Intelligence 19, 1–14 (1997)CrossRefGoogle Scholar
  10. 10.
    Hyvarinen, A.: Survey on independent component analysis. Neural Computing Surveys 2, 94–128 (1999)Google Scholar
  11. 11.
    Jolliffe, I.T.: Principal component analysis. Springer, New York (1986)Google Scholar
  12. 12.
    Karcher, H.: Riemann center of mass and mollifier smoothing. Comm. Pure Appl. Math. 30, 509–541 (1977)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Klassen, E., Srivastava, A., Mio, W., Joshi, S.: Analysis of planar shapes using geodesic paths on shape manifolds. IEEE Trans. on Pattern Analysis and Machine Intelligence 26, 372–383 (2004)CrossRefGoogle Scholar
  14. 14.
    Liu, X., Cheng, L.: Independent spectral representations of images for recognition. J. Optical Soc. of America 20(7) (2003)Google Scholar
  15. 15.
    Mumford, D.: The Bayesian rationale for energy functionals. In: Romeny, B. (ed.) Geometry-Driven Diffusion in Computer Vision, pp. 141–153. Kluwer Academic, Dordrecht (1994)Google Scholar
  16. 16.
    Mumford, D.: Elastica and computer vision, pp. 491–506. Springer, New York (1994)Google Scholar
  17. 17.
    Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42, 577–685 (1989)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Pistone, B., Sempi, C.: An infinite-dimensional geometric structure on the space of all probability measures equivalent to a given one. The Annals of Statistics 23(5), 1543–1561 (1995)zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Portilla, J., Simoncelli, E.P.: A parametric texture model based on join statistics of complex wavelet coeeficients. International Journal of Computer Vision 40(1), 49–70 (2000)zbMATHCrossRefGoogle Scholar
  20. 20.
    Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10, 1299–1319 (1998)CrossRefGoogle Scholar
  21. 21.
    Srivastava, A., Joshi, S., Mio, W., Liu, X.: Statistical shape analysis: Clustering, learning and testing. IEEE Trans. on Pattern Analysis and Machine Intelligence 27, 590–602 (2005)CrossRefGoogle Scholar
  22. 22.
    Srivastava, A., Liu, X., Grenander, U.: Universal analytical forms for modeling image probability. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(9), 1200–1214 (2002)CrossRefGoogle Scholar
  23. 23.
    Wu, Y.N., Zhu, S.C., Liu, X.: Equivalence of Julesz ensembles and FRAME models. International Journal of Computer Vision 38(3), 247–265 (2000)zbMATHCrossRefGoogle Scholar
  24. 24.
    Zhu, S.C., Wu, Y., Mumford, D.: Filters, random fields and maximum entropy (FRAME). International Journal of Computer Vision 27, 1–20 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Washington Mio
    • 1
  • Dennis Badlyans
    • 1
  • Xiuwen Liu
    • 2
  1. 1.Department of MathematicsFlorida State UniversityTallahasseeUSA
  2. 2.Department of Computer ScienceFlorida State UniversityTallahasseeUSA

Personalised recommendations