Advertisement

Automated Detection of Tumors in Mammograms Using Two Segments for Classification

  • Mahmoud R. Hejazi
  • Yo-Sung Ho
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3767)

Abstract

A spread pattern of a tumor in medical images is an important factor for classification of the tumor. The spread pattern is generally not considered when we use only one segment for classification. In order to include the spread pattern for tumor analysis, we propose an approach for classification of tumors in mammograms using two segments for a mass. The proposed approach is performed in two stages. In the first stage, the system separates segments of the image that may correspond to tumors using a combination of morphological operations and a region growing technique. In the second stage, segmented regions are classified as normal, benign, or malignant tissues based on different measurements. The measurements pertain to shape, intensity variation around the mass, as well as the spread pattern. Experimental results with mammogram images of the MIAS database show reasonable improvements in correct detection of possible tumors, compared to other approaches.

Keywords

Tumor classification spread pattern segmentation mammogram 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brzakovic, D., Luo, X.M., Brzakovic, P.: An Approach to Automated Detection of Tumors in Mammograms. IEEE Trans. on Medical Imaging 9(3), 232–241 (1990)CrossRefGoogle Scholar
  2. 2.
    Brzakovic, D., Neskovic, M.: Mammogram Screening Using Multiresolution-Based Image Segmentation. In: Bowyer, K.W., Astley, S.M. (eds.) State of the Art in Digital Mammographic Image Analysis, vol. 9, pp. 103–127. World Scientific, Singapore (1994)CrossRefGoogle Scholar
  3. 3.
    Ng, S.L., Bischof, W.F.: Automated Detection and Classification of Breast Tumors. Computers and Biomedical Research 25, 218–237 (1992)CrossRefGoogle Scholar
  4. 4.
    Groshong, B.R., Kegelmeyer, W.P.: Evaluation of a Hough Transform Method for Circumscribed Lesion Detection. In: Doi, K., Giger, M.L., Nishikawa, R.M., Schmidt, R.A. (eds.) Digital Mammography, pp. 361–366. Elsevier, Amsterdam (1996)Google Scholar
  5. 5.
    Mudigonda, N.R., Rangayyan, R.M., Desautels, J.E.L.: Gradient and Texture Analysis for Classification of Mammographic Masses. IEEE Trans. on Medical Imaging 19 (2000)Google Scholar
  6. 6.
    Petroudi, S., Kadir, T., Brad, M.: Automatic Classification of Mammographic Parenchymal Patterns: A Statistical Approach. In: Proc. of the 25th Annual Int. Conf. of the IEEE EMBS Cancun, Mexico (2003)Google Scholar
  7. 7.
    Öktem, V., Jouny, I.: Automatic Detection of Malignant Tumors in Mammograms. In: Proc. of the 26th Annual Int. Conf. of the IEEE EMBS, USA (2004)Google Scholar
  8. 8.
    Stack, J.P., Redmond, O.M., Codd, M.B., Dervan, P.A., Ennis, J.T.: Breast Disease: Tissue Characterization with Gd-DTPA Enhancement Profiles. In: Radiology, vol. 174, pp. 491–494 (1990)Google Scholar
  9. 9.
    Hu, Y.H., Hwang, J.N.: Handbook of Neural Network Signal Processing. CRC Press, Boca Raton (2002)Google Scholar
  10. 10.
    Dougherty, E., Lotufo, R.: Hands on Morphological Image Processing. SPIE Press, San Jose (2003)CrossRefGoogle Scholar
  11. 11.
    Soille, P.: Morphological Image Analysis: Principles and Applications, 2nd edn. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  12. 12.
    Kopans, D.B.: Breast Imaging, 2nd edn. Lippincott Williams & Wilkins, Philadelphia (1998)Google Scholar
  13. 13.
  14. 14.
    Aguado, A.S., Montiel, M.E., Nixon, M.S.: Using Directional Information for Parameter Space Decomposition in Ellipse Detection. Pattern Recognition 29(3), 369–381 (1996)CrossRefGoogle Scholar
  15. 15.
    Ho, C., Chen, L.: A Fast Ellipse/Circle Detector Using Geometric Symmetry. Pattern Recognition 28(1), 117–124 (1995)CrossRefGoogle Scholar
  16. 16.
    Suckling, J., Parker, J., Dance, D.R., Astley, S., Hutt, I., Boggis, C.R.M., Ricketts, I., Stamatakis, E., Cerneaz, N., Kok, S.L., Taylor, P., Betal, D., Savage, J.: The Mammographic Image Analysis Society Digital Mammogram Database. In: Gale, A.G., Astley, S.M., Dance, D.R., Cairns, A.Y. (eds.) Digital Mammography, pp. 375–378. Elsevier, Amsterdam (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Mahmoud R. Hejazi
    • 1
  • Yo-Sung Ho
    • 1
  1. 1.Gwangju Institute of Science and Technology (GIST)GwangjuSouth Korea

Personalised recommendations