Advertisement

A Cross-Resolution Leaky Prediction Scheme for In-Band Wavelet Video Coding with Spatial Scalability

  • Dongdong Zhang
  • Jizheng Xu
  • Feng Wu
  • Wenjun Zhang
  • Hongkai Xiong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3767)

Abstract

In in-band wavelet video coding schemes, motion prediction is applied in the spatial subband domain. Compared to motion prediction in full-resolution image domain, in-band schemes suffer coding performance loss at full resolution. One reason is that signals of the subband at low resolution are predicted from the reference frames at low resolution, which has comparatively low quality. However, if signals of the subband at high resolution are involved in the prediction of signals at low resolution, mismatch will occur in decoding low-resolution video when the corresponding signals of high resolution are not available at the decoder. This paper first analyzes the mismatch error propagation when low-resolution video is decoded. Then based on the analysis we propose a frame-based cross-resolution leaky prediction scheme for in-band wavelet video coding to make a good trade-off between reducing mismatch error of low resolution and improving coding performance of high resolution. Experimental results show that, the proposed scheme can dramatically reduce the mismatch error by about 0.3~2.5dB at different bit rates for the low resolution, while for the high resolution, the performance loss is marginal.

Keywords

Motion Compensation Scalable Video Code Full Resolution Resolution Video Mismatch Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, P., Hanke, K., Rusert, T., Woods, J.W.: Improvements to the MC-EZBC scalable video coder. In: Proc. IEEE Int. Conf. on Image Processing, Barcelona, vol. 2, pp. 14–17 (2003)Google Scholar
  2. 2.
    Xiong, R.Q., Wu, F., Li, S.P., Xiong, Z.X., Zhang, Y.Q.: Exploiting temporal correlation with adaptive block-size motion alignment for 3D wavelet coding. In: Proc. SPIE Visual Communications and Image Processing, San Jose, CA, pp. 144–155 (2004)Google Scholar
  3. 3.
    Flierl, M., Girod, B.: Video coding with motion-compensated lifted wavelet transforms. EURASIP Signal Processing: Image Communication 19, 561–575 (2004)CrossRefGoogle Scholar
  4. 4.
    Pau, G., Tillier, C., Pesquet-Popescu, B., Heijmans, H.: Motion compensation and scalability in lifting-based video coding. EURASIP Signal Processing: Image Communication 19, 577–599 (2004)CrossRefGoogle Scholar
  5. 5.
    Park, H.W., Kim, H.S.: Motion Estimation Using Low-Band-Shift Method for Wavelet-Based Moving-Picture Coding. IEEE Trans. on Image Processing 9, 577–587 (2000)CrossRefGoogle Scholar
  6. 6.
    Mehrseresht, N., Taubman, D.: An efficient content-adaptive MC 3D-DWT with enhanced spatial and temporal scalability. In: Proc. IEEE International Conference on Image Processing, Singapore, October, pp. 1329–1332 (2004)Google Scholar
  7. 7.
    van der Schaar, M., Ye, J.C.: Adaptive Overcomplete Wavelet Video Coding with Spatial Transcaling. In: Proc. SPIE Video Communications and Image Processing (VCIP), Lugano, Switzerland, pp. 489–500 (2003)Google Scholar
  8. 8.
    Andreopoulos, Y., Munteanu, A., Barbarien, J., van der Schaar, M., Cornelis, J., Schelkens, P.: In-band motion compensated temporal filtering. EURASIP Signal Processing: Image Communication 19, 653–673 (2004)CrossRefGoogle Scholar
  9. 9.
    Taubman, D., Mehrseresht, N., Leung, R.: SVC Technical Contribution: Overview of recent technology developments at UNSW. Int. Standards Org./Int.Electrotech. Comm(ISO/IEC) ISO/IEC JTC1/SC29/WG11 Document M10868 (2004)Google Scholar
  10. 10.
    Li, X.: Scalable video compression via overcomplete motion compensated wavelet coding. EURASIP Signal Processing: Image Communication 19, 637–651 (2004)CrossRefGoogle Scholar
  11. 11.
    Huang, H., Wang, C., Chiang, T.: A Robust Fine Granularity Scalability Using Trellis-Based Predictive Leak. IEEE trans. Circuits and Systems for Video Technology 12, 372–385 (2002)CrossRefGoogle Scholar
  12. 12.
    Han, S., Girod, B.: Robust and Efficient Scalable Video Coding with Leaky Prediction. In: Proc. IEEE International Conference on Image Processing, Rochester NY, pp. 41–44 (2002)Google Scholar
  13. 13.
    Liu, Y.X., Li, Z., Salama, P., Delp, E.J.: A discussion of leaky prediction based scalable coding. In: Proc. IEEE International Conference on Multimedia and Expo, vol. 2, pp. 565–568 (2003)Google Scholar
  14. 14.
    Gao, Y.L., Chau, L.P.: An efficient fine granularity scalable coding scheme using adaptive leaky prediction. In: Proc. Joint Conference of the Fourth International Conference on Information, Communications and Signal Processing and the Fourth Pacific Rim Conference on Multimedia, vol. 1, pp. 582–586 (2003)Google Scholar
  15. 15.
    Xiong, R.Q., Ji, X.Y., Zhang, D.D., Xu, J.Z., Pau, G., Trocan, M., Bottreau, V.: Vidwav Wavelet Video Coding Specifications. Int. Standards Org./Int.Electrotech. Comm(ISO/IEC) ISO/IEC JTC1/SC29/WG11 Document M12339 (2005)Google Scholar
  16. 16.
    Bottreau, V., Pau, G., Xu, J.Z.: Vidwav evaluation software manual, Int. Standards Org./Int.Electrotech. Comm(ISO/IEC) ISO/IEC JTC1/SC29/WG11 Document M12176 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Dongdong Zhang
    • 1
  • Jizheng Xu
    • 2
  • Feng Wu
    • 2
  • Wenjun Zhang
    • 1
  • Hongkai Xiong
    • 1
  1. 1.Image Communication InstituteShanghai Jiao Tong Univ.ShanghaiChina
  2. 2.Microsoft Research AsiaBeijingChina

Personalised recommendations