Analysis and Performance Evaluation of Flexible Marcoblock Ordering for H.264 Video Transmission over Packet-Lossy Networks

  • Changhoon Yim
  • Wonjung Kim
  • Hyesook Lim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3767)


Flexible macroblock ordering (FMO) is an error resilience feature of H.264 for video transmission over packet-lossy networks. Error concealment (EC) provides a basic error resilience tool for decoder to recover lost information and to reduce error propagation effect. This paper presents an analysis on the dependency of EC performance on FMO modes through the investigation of the expected number of correctly received neighboring macroblocks for a lost macroblock. We present simulation results and performance evaluation of FMO with different encoding parameters in various packet loss rates in the context of EC performance. Simulation results show that FMO provides an effective feature for PSNR improvement in environments with high packet loss rates, especially when intra-frame period is large.


Packet Loss Motion Vector Transmission Control Protocol Packet Loss Rate Video Transmission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wiegand, T., Sullivan, G.J., Bjøntegaard, G., Luthra, A.: Overview of the H.264/AVC video coding standard. IEEE Trans. Circuits Syst. Video Technol. 13(7), 560–576 (2003)CrossRefGoogle Scholar
  2. 2.
    Wenger, S.: H.264/AVC over IP. IEEE Trans. Circuits Syst. Video Technol. 13(7), 645–656 (2003)CrossRefGoogle Scholar
  3. 3.
    Sockhammer, T., Hannuksela, M.M., Wiegand, T.: H.264/AVC in wireless environments. IEEE Trans. Circuits Syst. Video Technol. 13(7), 657–673 (2003)CrossRefGoogle Scholar
  4. 4.
    Sockhammer, T., Wiegand, T., Wenger, S.: Optimized transmission of H.26L/JVT coded video over paket-lossy networks. In: Proc. IEEE Int. Conf. Image Processing (2002)Google Scholar
  5. 5.
    Sockhammer, T., Wiegand, T., Oelbaum, T., Obermeier, F.: Video coding and transport layer techniques for H.264/AVC-based transmission over paket-lossy networks. In: Proc. IEEE Int. Conf. Image Processing (2003)Google Scholar
  6. 6.
    Wang, Y.-K., Hannuksela, M.M., Varsa, V., Hourunranta, A., Gabbouj, M.: The error concealment feature in the H.26L test model. In: Proc. IEEE Int. Conf. Image Processing, vol. 2, pp. 729–733 (2002)Google Scholar
  7. 7.
    Lam, W.-M., Reibman, A.R., Liu, B.: Recovery of lost or erroneously received motion vectors. In: Proc. IEEE Int. Conf. Acoust. Speech Signal Proc., vol. 5, pp. 417–420 (1993)Google Scholar
  8. 8.
    H.264/AVC software coordination,
  9. 9.
    Wenger, S.: Common conditions for wire-line, low delay IP/UDP/RTP packet loss resilient testing. ITU-T SG16 Doc. VCEG-N79r1 (2001)Google Scholar
  10. 10.
    Luttrell, M., Wenger, S., Gallant, M.: New versions of packet loss environment and pseudomux tools (1999),,

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Changhoon Yim
    • 1
  • Wonjung Kim
    • 2
  • Hyesook Lim
    • 2
  1. 1.Konkuk UniversitySeoulKorea
  2. 2.Ewha W. UniversitySeoulKorea

Personalised recommendations