Maximizing Future Options: An On-Line Real-Time Planning Method

  • Ramon F. Brena
  • Emmanuel Martinez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3789)


In highly dynamic environments with uncertainty the elaboration of long or rigid plans is useless because the constructed plans are frequently dismissed by the arrival or new unexpected situations; in these cases, a “second-best” plan could rescue the situation. We present a new real-time planning method where we take into consideration the number and quality of future options of the next action to choose, in contrast to most planning methods that just take into account the intrinsic value of the chosen plan or the maximum valued future option. We apply our method to the Robocup simulated soccer competition, which is indeed highly dynamic and involves uncertainty. We propose a specific architecture for implementing this method in the context of a player agent in the Robocup competition, and we present experimental evidence showing the potential of our method.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, J., Hendler, J., Tate, A.: Readings in Planning. Representation and Reasoning Series. Morgan Kaufmann, San Mateo (1990)Google Scholar
  2. 2.
    Bowling, M., Browning, B., Veloso, M.: Plays as effective multiagent plans enabling opponent-adaptive play selection. In: Proceedings of International Conference on Automated Planning and Scheduling, ICAPS 2004 (2004)Google Scholar
  3. 3.
    Chen, M., Dorer, K., Foroughi, E., Heintz, F., Huang, Z., Kapetanakis, S., Kostiadis, K., Kummeneje, J., Murray, J., Noda, I., Obst, O., Riley, P., Steffens, T., Wang, Y., Yin, X.: Users manual: Robocup soccer server (for soccerserver version 7.07 and later)Google Scholar
  4. 4.
    de Boer, R., Kok, J.: The incremental development of a synthetic multi-agent system: The uva trilearn (2001)Google Scholar
  5. 5.
    Farahany, A., Rokooey, M., Salehe, M., Vosoughpour, M.: Mersad 2004 team description (2004)Google Scholar
  6. 6.
    Frank, I., Tanaka-Ishii, K., Arai, K., Matsubara, H.: The statistics proxy server. In: Stone, P., Balch, T., Kraetszchmar, G. (eds.) RoboCup-2000: Robot Soccer World Cup IV, pp. 303–308. Springer, Berlin (2001)CrossRefGoogle Scholar
  7. 7.
    Garrido, L., Brena, R., Sycara, K.: Towards modeling other agents: A simulation-based study. In: Sichman, J.S., Conte, R., Gilbert, N. (eds.) MABS 1998. LNCS (LNAI), vol. 1534, pp. 210–225. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. 8.
    Getoor, L., Ottosson, G., Fromherz, M., Carlson, B.: Effective redundant constraints for online scheduling. In: Proceedings of the 14th National Conference on Artificial Intelligence (AAAI 1997), Providence, Rhode Island, July 1997, pp. 302–307. AAAI Press / MIT Press, Menlo Park (1997)Google Scholar
  9. 9.
    Groen, F., Spaan, M., Vlassis, N.: Robot soccer: Game or science. In: Proceedings CNR 2002, Editura Universitaria Craiova (October 2002)Google Scholar
  10. 10.
    Koenig, S.: Agent-centered search. AI Magazine 22(4), 109–131 (2001)MathSciNetGoogle Scholar
  11. 11.
    Kok, J., Spaan, M., Vlassis, N.: Non-communicative multi-robot coordination in dynamic environments. Robotics and Autonomous Systems 50(2-3), 99–114 (2005)CrossRefGoogle Scholar
  12. 12.
    Martinez, E., Brena, R.: Simultaneous planning: A real-time planning method. Research on Computer Science 13, 3–11 (2005)Google Scholar
  13. 13.
    Martinez, E.: A real-time planning method for Robocup (in spanish). Master’s thesis, Tecnologico de Monterrey, Mexico (2005)Google Scholar
  14. 14.
    Riley, P., Veloso, M.: On behavior classification in adversarial environments. In: Parker, L.E., Bekey, G., Barhen, J. (eds.) Distributed Autonomous Robotic Systems 4, pp. 371–380. Springer, Heidelberg (2000)Google Scholar
  15. 15.
    Riley, P., Veloso, M.: Planning for distributed execution through use of probabilistic opponent models. In: IJCAI-2001 Workshop PRO-2: Planning under Uncertainty and Incomplete Information (2001)Google Scholar
  16. 16.
    Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice-Hall, Englewood Cliffs (2003)Google Scholar
  17. 17.
    Stone, P.: Layered learning in multiagent systems. In: AAAI/IAAI, p. 819 (1997)Google Scholar
  18. 18.
    Stone, P., Veloso, M.: Using decision tree confidence factors for multiagent control. In: Sycara, K.P., Wooldridge, M. (eds.) Proceedings of the 2nd International Conference on Autonomous Agents (Agents 1998), 1998, pp. 9–13. ACM Press, New York (1998)Google Scholar
  19. 19.
    Stone, P., Veloso, M.M.: Multiagent systems: A survey from a machine learning perspective. Autonomous Robots 8(3), 345–383 (2000)CrossRefGoogle Scholar
  20. 20.
    Zweben, M., Fox, M.S.: Intelligent Scheduling. Morgan Kaufmann, San Francisco (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ramon F. Brena
    • 1
  • Emmanuel Martinez
    • 1
  1. 1.Center for Intelligent SystemsmMonterrey Institute of Technology 

Personalised recommendations