Evolutionary Multiobjective Optimization Approach for Evolving Ensemble of Intelligent Paradigms for Stock Market Modeling

  • Ajith Abraham
  • Crina Grosan
  • Sang Yong Han
  • Alexander Gelbukh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3789)

Abstract

The use of intelligent systems for stock market predictions has been widely established. This paper introduces a genetic programming technique (called Multi-Expression programming) for the prediction of two stock indices. The performance is then compared with an artificial neural network trained using Levenberg-Marquardt algorithm, support vector machine, Takagi-Sugeno neuro-fuzzy model and a difference boosting neural network. As evident from the empirical results, none of the five considered techniques could find an optimal solution for all the four performance measures. Further the results obtained by these five techniques are combined using an ensemble and two well known Evolutionary Multiobjective Optimization (EMO) algorithms namely Non-dominated Sorting Genetic Algorithm II (NSGA II) and Pareto Archive Evolution Strategy (PAES)algorithms in order to obtain an optimal ensemble combination which could also optimize the four different performance measures (objectives). We considered Nasdaq-100 index of Nasdaq Stock Market and the S&P CNX NIFTY stock index as test data. Empirical results reveal that the resulting ensemble obtain the best results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham, A., AuYeung, A.: Integrating Ensemble of Intelligent Systems for Modeling Stock Indices. In: Mira, J., Álvarez, J.R. (eds.) IWANN 2003. LNCS, vol. 2687, pp. 774–781. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Abraham, A., Philip, N.S., Saratchandran, P.: Modeling Chaotic Behavior of Stock Indices Using Intelligent Paradigms. International Journal of Neural, Parallel & Scientific Computations 11(1&2), 143–160 (2003)MATHGoogle Scholar
  3. 3.
    Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithms for multiobjective optimization: NSGA II. KanGAL report 200001, Indian Institute of Technology, Kanpur, India (2000)Google Scholar
  4. 4.
    Del Brio, E.B., Miguel, A., Perote, J.: An investigation of insider trading profits in the Spanish stock market. The Quarterly Review of Economics and Finance 42(1), 73–94 (2002)CrossRefGoogle Scholar
  5. 5.
    Tay, F.E.H., Cao, L.J.: Modified Support Vector Machines in Financial Time Series Forecasting. Neurocomputing 48(1-4), 847–861 (2002)MATHCrossRefGoogle Scholar
  6. 6.
    Huang, W., Goto, S., Nakamura, M.: Decision-making for stock trading based on trading probability by considering whole market movement. European Journal of Operational Research 157(1)(16), 227–241 (2004)MATHCrossRefGoogle Scholar
  7. 7.
    Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice Hall Inc., USA (1997)Google Scholar
  8. 8.
    Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the Pareto archived evolution strategies. Evolutionary Computation 8(2), 149–172 (2000)CrossRefGoogle Scholar
  9. 9.
    Knowles, J.D., Corne, D.W.: The Pareto archived evolution strategy: A new baseline algorithm for Pareto multiobjective optimization. In: Congress on Evolutionary Computation (CEC 1999), Piscataway, NJ, vol. 1, pp. 98–105 (1999)Google Scholar
  10. 10.
    Knowles, J.D., Corne, D.W.: M-PAES:A memetic algorithm for multiobjective optimization. In: Proceedings of Congress on Evolutionary Computation, pp. 325–332 (2000)Google Scholar
  11. 11.
    Nasdaq Stock MarketSM: http://www.nasdaq.com
  12. 12.
    National Stock Exchange of India Limited: http://www.nse-india.com
  13. 13.
    Oh, K.J., Kim, K.J.: Analyzing stock market tick data using piecewise nonlinear model. Expert Systems with Applications 22(3), 249–255 (2002)CrossRefGoogle Scholar
  14. 14.
    Oltean, M., Grosan, C.: A Comparison of Several Linear GP Techniques. Complex Systems 14(4), 285–313 (2004)MATHMathSciNetGoogle Scholar
  15. 15.
    Oltean, M., Grosan, C.: Evolving Evolutionary Algorithms using Multi Expression Programming. In: Proceedings of The 7th European Conference on Artificial Life, Dortmund, Germany, pp. 651–658 (2003)Google Scholar
  16. 16.
    Philip, N.S., Joseph, K.B.: Boosting the Differences: A Fast Bayesian classifier neural network. Intelligent Data Analysis 4, 463–473 (2000)MATHGoogle Scholar
  17. 17.
    Rodríguez, R., Restoy, F., Peña, J.I.: Can output explain the predictability and volatility of stock returns? Journal of International Money and Finance 21(2), 163–182 (2002)CrossRefGoogle Scholar
  18. 18.
    Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)MATHGoogle Scholar
  19. 19.
    Wolpert, D.H., Macready, W.G.: No free lunch theorem for search. Technical Report SFI-TR-95-02-010. Santa Fe Institute, USA (1995)Google Scholar
  20. 20.
    Zhou, W.X., Sornette, D.: Testing the stability of the 2000 US stock market antibubble. Physica A: Statistical and Theoretical Physics 348(15), 428–452 (2005)Google Scholar
  21. 21.
    Wichard, J.D., Merkwirth, C., Ogorzalek, M.: Detecting correlation in stock market. Physica A: Statistical Mechanics and its Applications 344(1-2), 308–311 (2004)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ajith Abraham
    • 1
  • Crina Grosan
    • 2
  • Sang Yong Han
    • 1
  • Alexander Gelbukh
    • 3
  1. 1.School of Computer Science and EngineeringChung-Ang UniversitySeoulKorea
  2. 2.Department of Computer ScienceBabeş-Bolyai UniversityCluj-NapocaRomania
  3. 3.Centro de Investigación en Computación (CIC)Instituto Politécnico Nacional (IPN)Mexico

Personalised recommendations