Advertisement

Effects of Inter-agent Communication in Ant-Based Clustering Algorithms: A Case Study on Communication Policies in Swarm Systems

  • Marco Antonio Montes de Oca
  • Leonardo Garrido
  • José Luis Aguirre
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3789)

Abstract

Communication among agents in swarm intelligent systems and more generally in multiagent systems, is crucial in order to coordinate agents’ activities so that a particular goal at the collective level is achieved. From an agent’s perspective, the problem consists in establishing communication policies that determine what, when, and how to communicate with others. In general, communication policies will depend on the nature of the problem being solved. This means that the solvability of problems by swarm intelligent systems depends, among other things, on the agents’ communication policies, and setting an incorrect set of policies into the agents may result in finding poor solutions or even in the unsolvability of problems. As a case study, this paper focus on the effects of letting agents use different communication policies in ant-based clustering algorithms. Our results show the effects of using different communication policies on the final outcome of these algorithms.

Keywords

Multiagent System Pheromone Trail Communication Policy Simulation Cycle Test Database 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonabeau, E., Dorigo, M., Theralauz, G.: Swarm Intelligence. From Natural to Artificial Systems. Oxford University Press, Oxford (1999)MATHGoogle Scholar
  2. 2.
    Deneubourg, J.-L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., Chretien, L.: The dynamics of collective sorting: Robot-like ants and ant-like robots. In: Proceedings of the First International Conference on Simulation of Adaptive Behavior: From Animals to Animats, pp. 356–365. MIT Press, Cambridge (1991)Google Scholar
  3. 3.
    Dorigo, M., Di Caro, G., Gambardella, L.M.: Ant algorithms for discrete optimization. Artificial Life 5(2), 137–172 (1999)CrossRefGoogle Scholar
  4. 4.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)MATHCrossRefGoogle Scholar
  5. 5.
    Fritzke, B.: A growing neural gas network learns topologies. In: Advances in Neural Information Processing Systems 7. MIT Press, Cambridge (1995)Google Scholar
  6. 6.
    Grassé, P.-P.: La reconstruction du nid et les coordinations inter-individuelles chez bellicositermes natalensis et cubitermes sp. la theorie de la stigmergie: Essai d’interpretation des termites constructeurs. Insectes Sociaux 6(1), 41–83 (1959)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Handl, J., Knowles, J., Dorigo, M.: Ant-based clustering and topographic mapping. Artificial Life 11(2) (2005) (in press)Google Scholar
  8. 8.
    Handl, J., Meyer, B.: Improved ant-based clustering and sorting in a document retrieval interface. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 913–923. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Hettich, S., Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998), http://www.ics.uci.edu/~mlearn/mlrepository.html
  10. 10.
    Holland, O., Melhuish, C.: Stigmergy, self-organization, and sorting in collective robotics. Artificial Life 5, 173–202 (1999)CrossRefGoogle Scholar
  11. 11.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)Google Scholar
  12. 12.
    Lumer, E.D., Faieta, B.: Diversity and adaptation in populations of clustering ants. In: Proceedings of the Third International Conference on Simulation of Adaptive Behavior: From Animals to Animats, vol. 3, pp. 501–508. MIT Press, Cambridge (1994)Google Scholar
  13. 13.
    Monmarché, N., Slimane, M., Venturini, G.: On improving clustering in numerical databases with artificial ants. In: Floreano, D., Mondada, F. (eds.) ECAL 1999. LNCS, vol. 1674, pp. 626–635. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Montes de Oca, M.A.: Effects on clustering quality of direct and indirect communication among agents in ant-based clustering algorithms. Master’s thesis, Instituto Tecnológico y de Estudios Superiores de Monterrey. Campus Monterrey (2005)Google Scholar
  15. 15.
    Montes de Oca, M.A., Garrido, L., Aguirre, J.L.: Efectos de la comunicación directa entre agentes en los algoritmos de agrupación de clases basados en el comportamiento de insectos sociales. Inteligencia Artificial 9(25), 59–69 (2005)Google Scholar
  16. 16.
    Montes de Oca, M.A., Garrido, L., Aguirre, J.L.: An hybridization of an ant-based clustering algorithm with growing neural gas networks for classification tasks. In: Proceedings of the 2005 ACM Symposium on Applied Computing, pp. 9–13. ACM Press, New York (2005)CrossRefGoogle Scholar
  17. 17.
    Wilson, E.O.: The Insect Societies. The Belkap Press of Harvard University Press (1971)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Marco Antonio Montes de Oca
    • 1
  • Leonardo Garrido
    • 1
  • José Luis Aguirre
    • 1
  1. 1.Centro de Sistemas Inteligentes Tecnológico de MonterreyMonterreyMéxico

Personalised recommendations