Blind Deconvolution of Ultrasonic Signals Using High-Order Spectral Analysis and Wavelets

  • Roberto H. Herrera
  • Eduardo Moreno
  • Héctor Calas
  • Rubén Orozco
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3773)

Abstract

Defect detection by ultrasonic method is limited by the pulse width. Resolution can be improved through a deconvolution process with a priori information of the pulse or by its estimation. In this paper a regularization of the Wiener filter using wavelet shrinkage is presented for the estimation of the reflectivity function. The final result shows an improved signal to noise ratio with better axial resolution.

Keywords

Impulse Response Wavelet Coefficient Wavelet Domain Wiener Filter Ultrasonic Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Wan, S., Raju, B.I., Srinivasan, M.A.: Robust Deconvolution of High-Frequency Ultrasound Images Using Higher-Order Spectral Analysis and Wavelets. IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 50(10), 1286–1295 (2003)CrossRefGoogle Scholar
  2. 2.
    Herrera, R.H.: Procesamiento Digital de Señales Ultrasónicas, M.S. Tesis, CEETI. Fac. Elect., UCLV., Sta. Clara, Cuba (1998)Google Scholar
  3. 3.
    Neelamani, R., Choi, H., Baraniuk, R.: Wavelet-based deconvolution for Ill-conditioned systems. In: IEEE Conf. Acoust. Speech, and Signal Processing (ICAASP), vol. 6, pp. 3241–3244 (1999)Google Scholar
  4. 4.
    Neelamani, R., Choi, H., Baraniuk, R.: ForWaRD: Fourier-Wavelet Regularized Deconvolution for Ill-Conditioned Systems. IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 52(2), 418–432 (2004)MathSciNetGoogle Scholar
  5. 5.
    Oppenhiem, A.V., Schafer, R.W.: Discrete Time Signal Processing. Prentice-Hall, London (1989)Google Scholar
  6. 6.
    Taxt, T.: Comparison of cepstrum-based methods for radial blind deconvolution of ultrasound images. IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 44(3), 666–674 (1997)CrossRefGoogle Scholar
  7. 7.
    Adam, D.: Blind deconvolution of ultrasound sequences using nonparametric local polynomial estimates of the pulse. IEEE Trans. Biomedical Eng. 49(2), 118–130 (2002)CrossRefGoogle Scholar
  8. 8.
    Donoho, D.L.: De-noising by soft-thresholding. IEEE Trans. Inform., Theory 41, 613–627 (1995)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Roberto H. Herrera
    • 1
  • Eduardo Moreno
    • 2
  • Héctor Calas
    • 2
  • Rubén Orozco
    • 3
  1. 1.University of Cienfuegos, Cuatro CaminosCienfuegosCuba
  2. 2.Institute of Cybernetics, Mathematics and Physics (ICIMAF)HavanaCuba
  3. 3.Central University of Las VillasSanta ClaraCuba

Personalised recommendations