The Performance of Various Edge Detector Algorithms in the Analysis of Total Hip Replacement X-rays

  • Alfonso Castro
  • Carlos Dafonte
  • Bernardino Arcay
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3773)


Most traumatology services use radiological images to control the state and possible displacements of total hip replacement implants. Prostheses are typically and traditionally detected by means of edge detectors, a widely used technique in medical image analysis. This article analyses how different edge detectors identify the prosthesis in X-Rays by measuring the performance of each detection algorithm; it also determines the clinical usefulness of the algorithms with the help of clinical experts.


Edge Detector Radiology Information System Edge Detector Algorithm Active Shape Model Medical Image Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Johnson, R.C., et al.: Clinical and Radiographic Evaluation of Loose Total Hip Reconstruction, a Standard System Terminology for Reporting Results. Journal of Bone and Joint Surgery 72A, 161–168 (1990)Google Scholar
  2. 2.
    Downing, M.R., Undrill, P.E., Ashcroft, P., Hutchison, J.D., Hukins, D.W.L.: Interpretation of Femoral Component in Total Hip Replacement Radiographs. In: Image Understanding and Analysis 1997, Oxford,UK, pp. 149–152 (1997)Google Scholar
  3. 3.
    Ozanian, T.O., Phillips, R.: Image analysis for computer-assisted internal fixation of hip fractures. Medical Image Analysis 4, 137–159 (2000)CrossRefGoogle Scholar
  4. 4.
    Behiels, G., Maes, F., Vandermeulen, D., Suetens, P.: Evaluation of image features and search strategies for segmentation of bone structures in radiographs using Active Shape Models. Medical Image Analysis 6, 47–62 (2002)CrossRefGoogle Scholar
  5. 5.
    Pereira, J., Castro, A., Ronda, D., Arcay, B., Pazos, A.: Development of a System for Access to and Exploitation of Medical Images. In: Proceedings of Fifteenth IEEE Symposium on Computer-Based Medical Systems, Maribor, Eslovenia, pp. 309–314.6. (2002) (Anonymous)Google Scholar
  6. 6.
    Alonso, A., Arcay, B., Castro, A.: Analysis and Evaluation of Hard and Fuzzy Clustering Segmentation Techniques in Burned Patients Images. Image and Vision Computing 18, 1045–1054 (2000)CrossRefGoogle Scholar
  7. 7.
    Pereira, J., Castro, A., Castro, A., Arcay, B., Pazos, A.: Construction of a System for the Access, Storage and Exploitation of Data and Medical Images Generated in Radiology Information Systems (RIS). Medical Informatics and Internet in Medicine 27(3), 203–218 (2002)CrossRefGoogle Scholar
  8. 8.
    Canny, J.: A computational approach to edge detection. IEEE Trans. on Pattern Analysis and Machine Intelligence 8(6), 679–698 (1986)CrossRefGoogle Scholar
  9. 9.
    Heitger, F.: Detection using Suppression and Enhancement. Technical report n. 163. Image Science Lab, ETH-Zurich (1995)Google Scholar
  10. 10.
    Bezdek, J.C., Chandrasekhar, R., Attikouzel, Y.: A geometric approach to edge detection. IEEE Transactions on Fuzzy Systems 6(1), 52–75 (1998)CrossRefGoogle Scholar
  11. 11.
    Heath, M.D., Sarkar, S., Sanocki, T., Bowyer, K.W.: A Robust Visual Method for Assessing the Relative Performance of Edge-Detection Algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(12), 1339–1359 (1997)CrossRefGoogle Scholar
  12. 12.
    Bowyer, K.W., Phillips, P.J.: Empirical Evaluation Techniques in Computer Vision. IEEE Computer Press, Los Alamitos (1998)zbMATHGoogle Scholar
  13. 13.
    Kotcheff, A.C.W., Redhead, A., Taylor, C.J., Porter, M.L., Hunkins, D.W.L.: Shape Model Analysis of THR Radiographs. In: IEEE Proceedings of ICPR 1996, pp. 391–395 (1996)Google Scholar
  14. 14.
    Forsyth, D.A., Ponce, J.: Computer Vision A Modern Approach. Prentice Hall, Englewood Cliffs (2002)Google Scholar
  15. 15.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Sys., Man and Cybern. 15(1), 116–132 (1985)zbMATHGoogle Scholar
  16. 16.
    Lee, S.U., Chung, S.Y., Park, R.H.: A Comparative Performance Study of Several Global Thresholding Techniques for Segmentation. Computer Vision, Graphics and Image Processing 52, 171–190 (1990)CrossRefGoogle Scholar
  17. 17.
    Dougherty, S., Bowyer, K.W.: Objective Evaluation of Edge Detectors Using a Formally Defined Framework. In: Empirical Evaluation Techniques in Computer Vision, pp. 211–234. IEEE Computer Press, Los Alamitos (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Alfonso Castro
    • 1
  • Carlos Dafonte
    • 1
  • Bernardino Arcay
    • 1
  1. 1.Dept. of Information and Communications Technologies, Faculty of Computer SciencesUniversity of A CoruñaSpain

Personalised recommendations