Diagnosis of Breast Cancer in Digital Mammograms Using Independent Component Analysis and Neural Networks

  • Lúcio F. A. Campos
  • Aristófanes C. Silva
  • Allan Kardec Barros
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3773)

Abstract

We propose a method for discrimination and classification of mammograms with benign, malignant and normal tissues using independent component analysis and neural networks. The method was tested for a mammogram set from MIAS database, and multilayer perceptron neural networks, probabilistic neural networks and radial basis function neural networks. The best performance was obtained with probabilistic neural networks, resulting in 97.3% success rate, with 100% of specificity and 96% of sensitivity.

Keywords

Mammogram breast cancer independent component analysis neural networks computer aided diagnosis 

References

  1. 1.
    INCa, Internet site address, in, http://www.inca.gov.br/acessed 04/05/2005
  2. 2.
    Bick, U., Giger, M., Schmidt, R., Nishikawa, R., Wolverton, D., Doi, K.: Computer- aided breast cancer detection in screening mammography. Digital Mammogr’9Chicago, IL, pp. 97–103 (1996)Google Scholar
  3. 3.
    Elmore, J.G., Wells, C.K., Lee, C.H., Howard, D.H., Feinstein, A.R.: Variability in radiologists’ interpretations of mammograms. New England Journal of Medicine 331(22), 1493–1499 (1994)CrossRefGoogle Scholar
  4. 4.
    Bassett, L.W., Jackson, V.P., Jahan, R., Fu, Y.S., Gold, R.H.: Diagnosis of Diseases of the Breast. W. B. Saunders Company, Philadelphia (1997)Google Scholar
  5. 5.
    Kopans, D.B.: The positive predictive value of mammography. American Journal of Roentgenology 158(3), 521–526 (1993)Google Scholar
  6. 6.
    Tabar, L., Dean, P.B.: Teaching Atlas of Mammography, 2nd revised edn. Georg Thieme, New York (1985)Google Scholar
  7. 7.
    Petrick, N., Sahiner, B., Chan, H., Helvie, M.A., Paquerault, S., Hadjiiski, L.M.: Breast Cancer Detection: Evaluation of a Mass-Detection Algorithm for Computer-aided Diagnosis—Experience in 263 Patients. Radiology 224, 217–224 (2002)CrossRefGoogle Scholar
  8. 8.
    Renato, C., Armando, B., et al.: A novel approach to mass detection in digital mammography based on Support Vector Machines (SVM). In: proceedings of the 6th International workshop in digital Mammography (IWDM), Bremem, Germany, pp. 399–401. Springer, Heidelberg (2002)Google Scholar
  9. 9.
    Christoyianni, I., Koutras, A., Kokkinakis, G.: Computer aided diagnosis of breast cancer in digitized mammograms. Comp. Med. Imag. & Graph. 26, 309–319 (2002)CrossRefGoogle Scholar
  10. 10.
    Arons, B.: A review of cocktail party. MIT laboratory, Cambridge (1990)Google Scholar
  11. 11.
    Vigário, R.: Extraction of ocular artifacts form ecg using independent components analysis. Eletroenceph. Clin. Neurophysiol. 103(3), 395–404 (1997)CrossRefGoogle Scholar
  12. 12.
    Vigário, R., Jousmaki, V., Hamalaien, M., Hari, R., Oja, E.: Independent component analysis for identification of artifacts in magnetoencephalographic recordings. In: Proc. NIPS 1997 andvances in neural information processing, vol. 10, pp. 229–235. MIT press, Cambridge (1998)Google Scholar
  13. 13.
    Makeig, S., Bell, A.J., Jung, T.-P., Sejnowski, T.J.: Indepent component analysis of electroencephalographic data. In: Advances in neural information processing systems, vol. 8, pp. 145–151. MIT press, Cambridge (1996)Google Scholar
  14. 14.
    Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley & Sons, New York (2001)CrossRefGoogle Scholar
  15. 15.
    Hyvärinen, A., Oja, E.: A fast fixed-point algorithm for independent component analysis. Neural Computation 9(7), 1483–1492 (1997)CrossRefGoogle Scholar
  16. 16.
    Hyvärinen, A.: A family of fixed-point algorithms for independent component analysis. In: Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP 1997), Munich, Germany, pp. 3917–3920 (1997)Google Scholar
  17. 17.
    Hyvärinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. on Neural Networks (1999)Google Scholar
  18. 18.
    Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. WileyInterscience Publication, New York (1973)MATHGoogle Scholar
  19. 19.
    Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, New York (1999)Google Scholar
  20. 20.
    Christoyianni, I., Dermatas, E., Kokkinakis, G.: Fast detection of masses in computer-aided mammography. IEEE Signal Process. Mag. 17(1), 54–64 (2000)CrossRefGoogle Scholar
  21. 21.
    Christoyianni, I., Dermatas, E., Kokkinakis, G.: Neural classification of abnormal tissue in digital mammography using statistical features of the texture. In: IEEE Int Conf. Electron., Circuits Syst., vol. 1, pp. 117–120 (1999)Google Scholar
  22. 22.
    Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press, London (1990)MATHGoogle Scholar
  23. 23.
    Suckling, J., et al.:: The Mammographic Image Analysis Society Digital Mammogram Database Exerpta Medica. International Congress Series, vol. 1069, pp. 375–378 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Lúcio F. A. Campos
    • 1
  • Aristófanes C. Silva
    • 1
  • Allan Kardec Barros
    • 1
  1. 1.Laboratory for Biologic Information ProcessingUniversity of Maranhão

Personalised recommendations