Automatic Removal of Impulse Noise from Highly Corrupted Images

  • Vitaly Kober
  • Mikhail Mozerov
  • Josué Álvarez-Borrego
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3773)

Abstract

An effective algorithm for automatic removal impulse noise from highly corrupted monochromatic images is proposed. The method consists of two steps. Outliers are first detected using local spatial relationships between image pixels. Then the detected noise pixels are replaced with the output of a rank-order filter over a local spatially connected area excluding the outliers, while noise-free pixels are left unaltered. Simulation results in test images show a superior performance of the proposed filtering algorithm comparing with conventional filters. The comparisons are made using mean square error, mean absolute error, and subjective human visual error criterion.

Keywords

Mean Square Error Impulse Noise Central Pixel Mean Absolute Error Impulsive Noise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Pitas, I., Venetsanopoulos, A.N.: Nonlinear digital filters. Principles and applications. Kluwer Academic Publishers, Boston (1990)MATHGoogle Scholar
  2. 2.
    Tsekeridou, S., Kotropoulos, C., Pitas, I.: Adaptive order statistic filters for the removal of noise from corrupted images. Optical Engineering 37, 2798–2815 (1998)CrossRefGoogle Scholar
  3. 3.
    Abreu, E., Linghtstone, M., Mitra, S.K., Arakawa, K.: A new efficient approach for the removal of impulse noise from highly corrupted images. IEEE Trans. on Image Processing 2(6), 1012–1025 (1993)Google Scholar
  4. 4.
    Lehmann, T., Oberschelp, W., Pelikan, E., Repges, R.: Image processing for medical images. Springer, Heidelberg (1997)Google Scholar
  5. 5.
    Zhang, D., Wang, Z.: Impulse noise detection and removal using fuzzy techniques. Electronics Letter 33(5), 378–379 (1997)CrossRefGoogle Scholar
  6. 6.
    David, H.A.: Order statistics. Wiley, New York (1970)MATHGoogle Scholar
  7. 7.
    Kober, V., Mozerov, M., Alvarez-Borrego, J.: Nonlinear filters with spatially connected neighborhoods. Optical Engineering 40(6), 971–983 (2001)CrossRefGoogle Scholar
  8. 8.
    Mozerov, M., Kober, V., Choi, T.: Noise Removal from highly corrupted color images with adaptive neighborhoods. IEICE Trans. on Fund. E86-A(10), 2713–2717 (2003)Google Scholar
  9. 9.
    Kober, V., Mozerov, M., Alvarez-Borrego, J.: Spatially adaptive algorithms for impulse noise removal from color images. In: Sanfeliu, A., Ruiz-Shulcloper, J. (eds.) CIARP 2003. LNCS, vol. 2905, pp. 113–120. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Vitaly Kober
    • 1
  • Mikhail Mozerov
    • 2
  • Josué Álvarez-Borrego
    • 3
  1. 1.Department of Computer ScienceDivision of Applied Physics, CICESEEnsenadaMexico
  2. 2.Laboratory of Digital OpticsInstitute for Information Transmission ProblemsMoscowRussia
  3. 3.Dirección de Telemática, CICESEEnsenadaMexico

Personalised recommendations