Nonlinear Civil Structures Identification Using a Polynomial Artificial Neural Network

  • Francisco J. Rivero-Angeles
  • Eduardo Gomez-Ramirez
  • Ruben Garrido
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3773)

Abstract

Civil structures could undergo hysteresis cycles due to cracking or yielding when subjected to severe earthquake motions or even high wind. System identification techniques have been used in the past years to assess civil structures under lateral loads. The present research makes use of a polynomial artificial neural network to identify and predict, on-line, the behavior of such nonlinear structures. Simulations are carried out using the Loma Prieta and the Mexico City seismic records on two hysteretic models. Afterwards, two real seismic records acquired on a 24-story concrete building in Mexico City are used to test the proposed algorithm. Encouraging results are obtained: fast identification of the weights and fair prediction of the output acceleration.

Keywords

Mexico City Structural Health Monitoring Seismic Record Civil Structure Hysteretic Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Box, G.E.P., Jenkin, G.M.: Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco (1970)MATHGoogle Scholar
  2. 2.
    Chen, S., Billings, A.: Representations of Nonlinear Systems: the NARMAX model. Int. J. of Control 49(3) (1989)Google Scholar
  3. 3.
    Gomez-Ramirez, E., Poznyak, A., Gonzalez-Yunes, A., Avila-Alvarez, M.: Adaptive Architecture of Polynomial Artificial Neural Network to Forecast Nonlinear Time Series. In: Congress on Evolutionary Computation, CEC 1999, Mayflower, Washington, D.C., USA, July 6 - 9 (1999)Google Scholar
  4. 4.
    Housner, G.W., Bergman, L.A., Caughey, T.K., Chassiakos, A.G., Claus, R.O., Masri, S.F., Skelton, R.E., Soong, T.T., Spencer, B.F., Yao, J.T.P.: Structural Control: Past, Present and Future. Journal of Engineering Mechanics 123(9) (September 1997)Google Scholar
  5. 5.
    Humar, J.L.: Dynamics of Structures. A. A. Balkema Publishers, Rotterdam (2001)Google Scholar
  6. 6.
    Korenberg, M., Billings, S.A., Liu, Y.P., McIlroy, P.J.: Orthogonal Parameter Estimation Algorithm for Non-Linear Stochastic Systems. International Journal of Control 48(1) (1988)Google Scholar
  7. 7.
    Kosmatopoulos, E.B., Smyth, A.W., Masri, S.F., Chassiakos, A.G.: Robust Adaptive Neural Estimation of Restoring Forces in Nonlinear Structures. Transactions of the ASME, Journal of Applied Mechanics 68 (November 2001)Google Scholar
  8. 8.
    Loh, C.H., Chung, S.T.: A Three-Stage Identification Approach for Hysteretic Systems. Earthquake Engineering and Structural Dynamics 22, 129–150 (1993)CrossRefGoogle Scholar
  9. 9.
    Martinez-Garcia, J.C., Gomez-Gonzalez, B., Martinez-Guerra, R., Rivero-Angeles, F.J.: Parameter Identification of Civil Structures Using Partial Seismic Instrumentation. In: 5th Asian Control Conference, ASCC, Melbourne, Australia, July 20-23 (2004)Google Scholar
  10. 10.
    Masri, S.F., Miller, R.K., Saud, A.F., Caughey, T.K.: Identification of Nonlinear Vibrating Structures: Part I - Formulation. Transactions of the ASME, J. of Applied Mechanics 57 (December 1987)Google Scholar
  11. 11.
    Masri, S.F., Chassiakos, A.G., Caughey, T.K.: Structure-unknown non-linear dynamic systems: identification through neural networks. Smart Mater. Struct. 1, 45–56 (1992)CrossRefGoogle Scholar
  12. 12.
    Masri, S.F., Chassiakos, A.G., Caughey, T.K.: Identification of nonlinear dynamic systems using neural networks. J. of Applied Mechanics 60, 123–133 (1993)CrossRefGoogle Scholar
  13. 13.
    Mohammad, K.S., Worden, K., Tomlinson, G.R.: Direct Parameter Estimation for Linear and Non-linear Structures. Journal of Sound and Vibration 152(3) (1992)Google Scholar
  14. 14.
    Sugeno, M.: Industrial Applications of Fuzzy Control. Elsevier Science Pub. Co., Amsterdam (1985)Google Scholar
  15. 15.
    Wen, Y.K.: Method for Random Vibration of Hysteretic Systems. Journal of Engineering Mechanics, ASCE 102(2), 249–263 (1976)Google Scholar
  16. 16.
    Yar, M., Hammond, J.K.: Parameter Estimation for Hysteretic Systems. J. of Sound and Vibration 117(1) (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Francisco J. Rivero-Angeles
    • 1
  • Eduardo Gomez-Ramirez
    • 2
  • Ruben Garrido
    • 1
  1. 1.Departamento de Control AutomaticoCentro de Investigacion y de Estudios Avanzados del IPN, CINVESTAVMexico, D.F.Mexico
  2. 2.Laboratorio de Investigacion y Desarrollo, de Tecnologia AvanzadaUniversidad La SalleMexico, D.F.Mexico

Personalised recommendations